The power required to train frontier AI models is doubling annually
Training frontier models requires a large and growing amount of power for GPUs, servers, cooling and other equipment. This is driven by an increase in GPU count; power draw per GPU is also growing, but at only a few percent per year.
Training compute has grown even faster — around 4x/year. However, hardware efficiency (a 12x improvement in the last ten years), the adoption of lower precision formats (a 8x improvement) and longer training runs (a 4x increase) account for a roughly 2x/year decrease in power requirements relative to training compute.
Epoch’s work is free to use, distribute, and reproduce provided the source and authors are credited under the Creative Commons BY license.