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A Ramsey-style Problem on Hypergraphs

A precise statement of the question.

A hypergraph is a set V (called vertices) together with a collection H of subsets of V (called hyperedges). A
hypergraph (V,H) is said to contain a partition of size n if there is some D → V and P → H such that |D| = n and
every member of D is contained in exactly one member of P. In this case, we say that D and P form a partition in
(V,H).

For example, the picture on the left above shows a hypergraph with 8 vertices and 4 hyperedges. The picture on
the right shows that it contains a partition of size 4.

Given a hypergraph (V,H), a vertex v ↑ V is called isolated if v /↑
⋃
H.

Question. Find an example of a hypergraph (V,H) with no isolated vertices such that |V | ↓ 66, and (V,H) contains
no partitions of size >20.

The format of the answer should be as follows. Without loss of generality, we may (and do) assume the vertices
of the graph are positive whole numbers, for example V = {1, 2, 3, . . . , 66}. The members of H are subsets of V , and
should be expressed as a list of sets separated by commas. The sets are represented as lists of numbers separated
by commas and encased in curly braces. For example, the hypergraph illustrated above, after labelling the vertices
appropriately, is expressed in standard set-theoretic notation as:

(
{1, 2, 3, 4, 5, 6, 7, 8},

{
{1, 3, 4, 5}, {2, 3, 4, 5}, {4, 5, 6, 7}, {4, 5, 6, 8}

})
.

The appropriate way to format this hypergraph as an answer would be:

{1,3,4,5},{2,3,4,5},{4,5,6,7},{4,5,6,8}

Note that there is no need to input the list of vertices: it is redundant because if a hypergraph (V,H) has no isolated
points, then V =

⋃
H.

Background.

The idea for this question is taken from the paper

W. Brian and P. B. Larson, “Choosing between incompatible ideals,” European Journal of Combinatorics 26

(2021), article no. 103349.
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This paper explores several Ramsey-theoretic problems arising from studying the simultaneous convergence of sets of
infinite series. One of these problems centers around a sequence of numbers, which are denoted H(1), H(2), H(3), . . . ,
and defined as follows.

Definition 1. Define H(n) to be the greatest k ↑ N such that there is a hypergraph (V,H) with |V | = k having no
isolated vertices and containing no partitions of size greater than n.

In this terminology, our question is simply: Show H(20) ↓ 66.
It is not immediately clear that the number H(n) is well-defined for all n. A priori, it seems that there could be

arbitrarily large hypergraphs having no isolated vertices and containing no partitions of size greater than n. Part
of the paper is devoted to showing this is not the case, so H(n) is always well-defined, and to putting reasonable
bounds on H(n). The bounds given in the paper are roughly:

1
2n log2(n)↔

1
2n < H(n) < n lnn+ ωn,

where ω is the Euler-Mascheroni constant. More precisely, the best known upper bound is H(n) ↗
∑

n

k=1
n

k
, and the

lower bound can be expressed as kn ↗ H(n), where the sequence k1, k+2, k3, . . . is defined recursively by the formula

k1 = 1 and kn =
⌊
n

2

⌋
+ k→n

2 ↑ + k→n+1
2 ↑.

The precise values in the sequence H(1), H(2), H(3), . . . have proved very di!cult to pin down. Only the smallest
few values are known. The sequence begins:

H(1) = 1, H(2) = 3, H(3) = 5, H(4) = 8, H(5) = 10, H(6) = 14, H(7) = 17.

The values of H(1) through H(5) follow immediately from the bounds given above, since (after rounding the upper
bound down to the nearest integer) these bounds match for n = 1, 2, 3, 4, 5. The bounds above give 13 ↗ H(6) ↗ 14.
Showing that H(6) = 14 requires finding a hypergraph of size 14 that contains no partitions of size > 6. Here are
two such examples:

One thing to notice is that while these examples were rather di!cult to find, it is very easy to verify that they
are examples. Indeed, one can check by hand, in just a few minutes, that these hypergraphs do not contain any
partitions of size >6.

The fact that H(7) = 17 is the result of a direct computer search carried out as the honors project of an under-
graduate student, Lauren Ostrea, in 2022. She wrote a Java program that systematically searched for hypergraphs
of size 17 and 18 with no partitions of size > 7. Her program had to run overnight to verify (by exhaustion) that
there is no example of size 18. Even though the size-17 example took an enormous amount of computation to find
by brute force, verifying that it had the required properties was completely straightforward. For hypergraphs of this
size, it is still a feasible task to do by hand.

Why such a hypergraph should exist.

Jacob Page, a master’s student at UNC Charlotte, wrote his thesis on the problem of finding improved bounds
for the H(n):
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J. D. Page, “Improved bounds on a combinatorial problem,” Master’s thesis, University of North Carolina at
Charlotte, 2021.

While he was not able to improve our upper bounds, he was able to find a di”erent approach to obtaining lower
bounds. This approach starts with an intricate construction of hypergraphs with no large partitions. His approach
yields better lower bounds for most values of n, but not all. Asymptotically his bounds are the same, and constitute
(roughly) an improvement on the original ↘ n log2 n bound by a term of order log n.

In addition to the student project by Lauren Ostrea and the master’s project by Jacob page, several other
mathematicians have taken an interest in the sequence H(n). The main reason for this interest is that the sequence
is intimately related to problems from infinite combinatorics concerning the simultaneous convergence of many infinite
series. These problems on infinite series were in fact the original motivation for the Brian-Larson paper. The problems
arise in:

J. Brendle, W. Brian, and J. D. Hamkins, “The subseries number,” Fundamenta Mathematicae 247 (2019),
pp. 49–81.

W. Brian, “Three conditionally convergent series, but not four,” Bulletin of the London Mathematical Society
51 (2019), pp. 207–222.

I have corresponded further with Paul Larson about this problem, on and o” since we published our paper in
2021. Jörg Brendle has also retained an interest in the related infinite series problems, and worked on ideas close
to the H(n) sequence since 2019. Tristan van der Vlugt has also taken an interest in this constellation of questions,
and he and I have corresponded about them recently.

The consensus seems to be that improving the bounds on the H(n), in either direction, will require some kind
of conceptual breakthrough. A brute force approach seems impossible (as described below), but the work of Page
suggests that the lower bounds can be improved by finding clever constructions of hypergraphs.

Indeed, we all suspect that the lower bounds may be more susceptible to improvement than the upper bounds.
This suspicion arises in part from the fact that the current upper bounds are much more di!cult to prove than the
current lower bounds – the proof of the latter feels somewhat coarse and ine!cient. Furthermore, in the first two
cases where the lower and upper bounds do not match, n = 6 and 7, the lower bounds have proven not to be optimal,
and the work of Page shows the lower bounds from the Brian-Larson paper are not optimal for most n.

The best known lower bound on H(20) is 64, and our question asks to improve this to 66. The value seems a safe
compromise between going too low, and risking making the question too easy, and going too high, and risking that
there is no answer.

The infeasibility of finding it by brute force.

To prove k ↗ H(n) for some k, one must construct a k-sized hypergraph with no partitions of size > n. The
search space for such hypergraphs grows very rapidly with k and n. A reasonably smart search should utilize a few
not-too-di!cult facts:

≃ A hypergraph (V,H) witnessing H(n) ↓ k need have no more than k vertices; in other words, there is no
advantage to considering hypergraphs of size >k.

≃ A hypergraph (V,H) witnessing H(n) ↓ k need have no more than n hyperedges; so we may assume, without
loss of generality, that |H| ↗ n.

≃ A hypergraph (V,H) witnessing H(n) ↓ k can have no edges of size >n (because if E ↑ H and |E| > n, then
P = {E} is a partition of size |E| > n).

In addition to these facts, a smart seach should also utilize the following heuristic:

≃ A hypergraph (V,H) witnessing H(n) ↓ k should have all hyperedges E ↑ H with |E| ↘ n.

This is true for all known examples of critical hypergraphs for the H(n). Moreover, experimenting with building
these hypergraphs simply gives one the feeling that having many small hyperedges is not optimal.

Taking these things into account, we can compute the number of potential hypergraphs to consider in a “smart”
search for a witness to H(n) ↓ k. There are

(
k

ω

)
possible edges of size ε, and (using the last heuristic), we take ε to

3



go from 1
2n up to n. This gives a total of

∑
n

ω= 1
2n

(
k

ω

)
possible edges. We then must choose n of these possible edges

to form our hypergraph. The total number of hypergraphs to be considered in this kind of search is therefore

(∑n

ω= 1
2n

(
k

ω

)

n

)
↘

(
k
n

n

)
↘ k

n
2

.

Being more optimistic about the search space, let us point out that having all hyperedges of size n or n ↔ 1 seems
to be the norm for small hypergraphs witnessing H(n) ↓ k. Making this concession (though there is no real reason
to think it continues to hold for larger n), the total number of hypergraphs to be considered in this kind of search

drops to
((kn)+( k

n→1)
n

)
.

For example, even with n = 15 and k = 45, a computation on WolframAlpha gives

(∑15
ω=8

(45
ω

)

15

)
=

(
627947490860

15

)
↘ 7.1⇐ 10164,

or for the more optimistic estimation of the search space,

((45
15

)
+
(45
14

)

15

)
=

(
511738760544

15

)
↘ 3.3⇐ 10163.

For each candidate in this search space, one must check whether it witnesses H(15) ↓ 45 or not. Realistically, this
check requires many thousands of computations. Continuing with unwarranted optimism, however, let us simplify
things by regarding each such check as a single computation. The fastest computers today perform on the order
of 1018 computations per second. Assuming one could check 1018 hypergraphs per second (which, again, is wildly
optimistic), it would still take on the order of 10138 years to check all the 3.3 ⇐ 10163 candidates in a brute force
search, even when using a “smart” search and being overly optimistic about both the number of candidates to check
and the time needed to check each candidate.

In short, it seems completely impossible that this kind of search could be carried out by brute force.

Natural Modifications giving rise to further questions.

A more general version of this problem is: Given some n and k, find a hypergraph witnessing H(n) ↓ k. This
problem is meaningful only in the case where k exceeds the current best known lower bound for H(n), but is fairly
close to it (so that it is reasonable to expect such a witness to exist). For any n ↓ 10, the calculations above show
that a brute force search for a solution should be out of reach.

The current values of n and k were chosen as a good compromise of all the following considerations:

≃ The number n should be large enough that it is infeasible to compute H(n) by brute force. Small values of n
(8 or 9) are already enough for this.

≃ The number n should be large enough that there is an appreciable gap between the best current lower and
upper bounds for H(n). This enables us to choose a number k that is more than one unit bigger than the lower
bound (to avoid the possibility of an in-hindsight-trivial improvement), but not very close to the upper bound
(to avoid the possibility of a witness not existing). This requires approximately n ↓ 15.

≃ On the other hand, n should be small enough that a proposed solution can be checked in a short amount of
time.

Listed below are the known lower and upper bounds on H(n) for n = 15, 16, . . . , 30. Choosing k to be a little
above the best known lower bound, for any of these n values, leads to a reasonable version of the problem. We have
listed two lower bounds for each n, the one on the left being the bound proved in the Brian-Larson paper, and the
one on the right being the one from Jacob Page’s thesis. In every case Page’s bound is at least as good as the old
bound.
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43 ↗ 43 ↗ H(15) ↗ 49

48 ↗ 48 ↗ H(16) ↗ 54

50 ↗ 50 ↗ H(17) ↗ 58

53 ↗ 56 ↗ H(18) ↗ 62

56 ↗ 58 ↗ H(19) ↗ 67

60 ↗ 64 ↗ H(20) ↗ 71

63 ↗ 66 ↗ H(21) ↗ 76

67 ↗ 72 ↗ H(22) ↗ 81

71 ↗ 74 ↗ H(23) ↗ 85

76 ↗ 80 ↗ H(24) ↗ 90

79 ↗ 82 ↗ H(25) ↗ 95

83 ↗ 88 ↗ H(26) ↗ 100

87 ↗ 90 ↗ H(27) ↗ 105

92 ↗ 96 ↗ H(28) ↗ 109

96 ↗ 98 ↗ H(29) ↗ 114

101 ↗ 104 ↗ H(30) ↗ 119
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