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Degree vs. Sensitivity for Boolean Functions:
Toward Explicit Separations Beyond the Kushilevitz Barrier

Problem statement
Construct a multilinear polynomial P : R — R of degree deg(P) > 1 (for some n > 1) such that
(i) P is Boolean on the cube, i.e. P(z) € {0,1} for all z € {0,1}";
(ii) We have
|P(0,...,0) — P(1,0,...,0)| + |P(0,...,0) — P(0,1,0...,0)| +...
+[P(0,...,0) — P(0,0,...,0,1)] = (deg(P))" (1)

log6
for some exponent a > Tog3 ~ 1.63.

Equivalently, the goal is to construct a Boolean function f : {0,1}" — {0,1} with

s(f) = (deg(f))" for some o > iggg.

where s(f) represents max-sensitivity of the boolean function f, i.e., max,eg,1}» Z?zl |f(x)— f(27)], where 27 is the
same vector as x, except j'th bit is flipped. (As is standard, by negating coordinates one may assume the maximum
sensitivity is attained at x = (0,...,0), and this does not change deg(f).)

Background and significance

A central theme in the analysis of Boolean functions is the relationship among the many complexity measures
associated with f, such as degree, (block) sensitivity, decision-tree complexities, certificate complexity, and others.
Over the years these measures were shown to be polynomially related, culminating in Huang’s resolution of the
Sensitivity Congjecture.! See [6, 1, 7].

Known lower and upper bounds between s(f) and deg(f). It is now known that

s(f) = v/deg(f) for all Boolean f, (2)
and this bound is tight. On the other side we have
s(f) < (deg(f))2 for all Boolean f, (3)

see (e.g.) [6, 7, 5, 12]. It is not known whether quadratic upper bound is tight (up to constants). A 2021 preprint
of Proskurin [8] shows that

s(f) < (deg(f))?
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where Tros 0.86....

'Huang proved s(f) > +/deg(f) settling a question of Nisan and Szegedy.
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Best explicit separation. The best explicit separation currently known between degree and sensitivity is due to
Kushilevitz and is achieved by the following function

6
h(zl,...,z(;):Zzi — Z ZiZj
i=1

1<i<j<6 (4)

+ (212324 + 212225 + 212425 + 222324 + 222325 + 212226 + 212326 + 222426 + 232526 + 2425256)7

In this example s(h) = 6 and deg(h) = 3, yielding

s(h) = (deg(h))*®°® = (deg(h))*s®/ 5@

This is the largest exponent « currently achieved by an explicit Boolean function [5, Example 5.4]; see also [12] for
background.

Why this problem matters. An explicit construction with exponent o > log(6)/log(3) would strictly im-
prove the best known separation between a local measure s(f) and a global algebraic measure deg(f)), and—by
powering/composition—would immediately give an infinite family witnessing the same exponent. Such constructions
have historically seeded advances across communication complexity, approximate degree, and learning lower bounds
4, 2, 11].

State of the art and obstacles

Two analytic tools repeatedly appear in sharp degree-sensitivity bounds: (a) symmetrization (reducing to a univariate
profile on Hamming layers) and (b) inequality machinery from approximation theory (e.g. Ehlich—Zeller and Markov-
type bounds) [3, 9, 10]. The preprint [8] shows how to combine symmetrization, discrete interpolation, and linear
programming to pin down a unique univariate symmetrized profile that any hypothetical fully sensitive degree-4
function on n = 10 variables must have. This tantalizing “n = 10,deg = 4” base, if it existed, would beat the
composition exponent, as it would give s(f) = 10 and deg(f) = 4, hence after powering s = O(n) and deg(f) =
nlogin4 ~ 19602 improving the exponent logs 2 ~ 0.630 implicit in the 3-variable, degree-2 base and also beating
logs 3 ~ 0.613 coming from the Kushilevitz base.

Despite substantial search (including modern computational exploration), no such n = 10,deg = 4 base is
known. In fact, enforcing natural symmetry subclasses (cyclic/dihedral on [10], standard pair-wreath symmetries,
and others) quickly leads to incompatibilities in the required local incidences across Hamming layers (our preliminary
checks confirm these obstructions). This strongly suggests that if the base exists it must be highly asymmetric.
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