2~ EPOCH Al

FrontierMath Open Problems
Epoch Al

New bounds for arithmetic Kakeya

A Kakeya set in R? is a bounded set which contains a unit line segment in every direction. While such sets can have
measure zero, the Kakeya conjecture posits that they always have the maximal possible (Minkowski and Hausdorff)
dimension d. This conjecture was proved for d = 2 by Davies [2] and in a recent breakthrough for d = 3 by Wang
and Zahl [10], but remains open for d > 4.

The arithmetic Kakeya conjecture was implicitly formulated by Katz and Tao [7], as a statement strong enough to
imply (a form of) the Kakeya conjecture, but which can be formulated as a purely additive combinatorics statement,
rather than harmonic analysis. The meta-theory of the arithmetic Kakeya conjecture was developed by Green and
Ruzsa [4], who gave a number of equivalent formulations.

One way to state the arithmetic Kakeya problem is the following: we say that AK(«) holds if for any € > 0 there
exists a constant C, > 0 and a finite set X C Z? such that r, + 7 # 0 for all x € X, and for all finite G C Z?2,

(1,-1) - G] < C. max|x - G|+,
xeX

where
x-G={x191 + 2292 : (91,92) € G}.

Note that we are not interested in the size or nature of X itself — for the applications to the Kakeya conjecture itself,
all that matters is the exponent a.

It is trivial that AK(2) holds (for example by taking X to be any two linearly independent vectors in Z2, as
then (1,—1) can be expressed as a linear combination of these two). The arithmetic Kakeya conjecture itself is the
following.

Conjecture 1 (Arithmetic Kakeya conjecture). AK(1) holds.

The first non-trivial bound was obtained by Bourgain [1], who proved AK(22). Katz and Tao improved this, first
in [6] to AK(Z), and then later [7] to AK(v) where v = 1.6751308 - - is the largest root of z — 4z + 2 = 0.
The relation to the Kakeya problem is the following.

Theorem 1. If AK(«) holds then, for all d > 2, if E C R? is a Kakeya set (a bounded set containing a unit line
segment in every direction) then the Hausdorff dimension of E is at least

ald+1—a %

This was implicitly established by Bourgain [1] using the ‘method of slices’, although Bourgain only established
this for the Minkowski dimension. The stronger statement that this same bound holds for the Hausdorff dimension
is a consequence of combining Bourgain’s argument with recent progress on Szemerédi’s theorem by Leng, Sah, and
Sawhney [9].

The arguments of Katz and Tao [6] are very concrete, and proceed by finding explicit small graphs with certain
properties. The goal of this problem is to find other explicit small graphs which lead, via the same argument, to
better bounds.

Most optimistically, one could hope for finding a construction that establishes AK(«) for some «« < 1.67 - --. This
would immediately, via the above, improve the known lower bounds for the Kakeya conjecture in all sufficiently high
dimensions.

Any new constructions would be of interest, however, as the argument of Katz and Tao [6] that produces the
current limit of o = 1.6751308--- requires an extremely large set of dilates X (that increases without bound as
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« approaches this value). If an exponent close to this could be found with a much simpler set then this would be
interesting.

Katz [5] has shown that AK(3/2) is the limit of this kind of elementary argument, and hence establishing the full
arithmetic Kakeya conjecture would be out of reach of this strategy.

The problem proposal

We will first explicitly define the kind of structure that is required, and how to ‘score’ such a structure (i.e. what
value of « a structure would prove AK(«) for). We will then give, in this language, two examples of Katz and Tao.
In the following subsection we sketch briefly how the proof goes, using the argument of Katz and Tao [6]. In this
subsection we have presented things to be clear for the human reader; an equivalent, but more opaque, version which
is more suitable for Python verification is given in Appendix ?7.

We first define a collection of constructible configurations iteratively.

Definition 1. Let X C Z%2. An X-constructible graph is a (simple undirected) finite graph, in which each edge is
labelled with some v € X, defined in the following iterative fashion.

1. A single vertex is constructible.

2. If H is constructible then, for any integer k > 1, if Xy,..., Xy are sets of vertices of H, then the following
graph is constructible: take k + 1 disjoint copies of H and then, for each 1 <i < k and x € X;, either identify
the vertices corresponding to x in both H;_1 and H;, or put an edge between them labelled with some v € X.

gi1 921
(1,0)
(0,1) (0,1)
g e g1 ———— 92 e g12 ———— g22
(1,0) (1,0)
(1,1) (0,1)
923 ——— J13
(1,0)

Figure 1: An example sequence of {(0,1),(1,0), (1,1)}-constructible graphs. The red colouring indicates the con-
structible components at each stage.

Given a finite set V, for any g € V and x € Z? we write xg for the 2 x |V| matrix which is zero everywhere except
in the column corresponding to ¢, in which it is the column vector x.

Definition 2. Let G be a finite graph with vertex set V, such that each edge is labelled with some x € Z>. An
X -forcing pair for G is a pair of sets (R,T) with T CV and R a finite collection of 2 x |V| integer matrices, with
columns indexed by g € V, such that

RC{xg:x€ X and g € V},

and such that a finite sequence of the following operations on (R,T) eventually produces T =V :
1. If g1 ~ g2 is an edge of G labelled v then add vg1 — vgs to R.
2. If (1,—1)g € R then add g to T.
3. Any Z-linear combination of matrices in R can be added to R.

Informally speaking, the idea is that knowledge of x- g for xg € R, together with knowledge of all h € T, is enough,
when combined with the identifications encoded in the edges of G and the injectivity of the map g — (1,—1) - g, to
know the values of all vertices of G.
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Definition 3. Let X C Z*\((1,—1)) be a finite set. A constructible proof of

m—+r

a(X) <

n—t
is an X -constructible graph G with vertex set V, with n vertices and m edges, for which there is a forcing pair (R, T)
with |R| =7 and |T| =t, where T CV and

RC{xg:xe X and g € V}.

In the following subsection we sketch how, as the terminology suggests, a constructible proof of a(X) < « implies
the arithmetic Kakeya statement AK(«).

Goal 1 (New bounds for the arithmetic Kakeya conjecture). Find a finite X C Z*\((1,—1)) together with a con-
structible proof of
a(X) < 1.67513- - ,

where the right-hand side is more precisely the largest root of 3 — 4x + 2 = 0. More ambitiously, can this be done
for some a close to 3/27

We reiterate that finding any X for which «(X) < 1.67513--- would already improve the current best bound
known for the arithmetic Kakeya conjecture, and hence also improve the known lower bounds for the Kakeya
conjecture in high dimensions.

A simple case of particular interest is when X = {(1,0), (0,1), (1,1)} (although this has no direct applications, that
we are aware of, to other problems such as Kakeya). This special case is sometimes referred as the Sums-Differences
conjecture. The current best-known upper bound of

a({(1,0),(0,1), (1, 1)}) < 11/6
is due to Katz and Tao [6].

Goal 2 (New bounds for the Sums-Differences conjecture). Find a constructible proof of

a({(1,0),(0,1),(1,1)}) < 11/6.

The current best-known lower bound for such an a is a > 1.77898, proved by Lemm [8] (with very slight further
improvements found by AlphaEvolve [3]).

We will now give, in this language, two examples of constructible proofs, both adapted from Katz and Tao [6].
The first is a constructible proof of

a({(1,0),(0,1),(1,1)}) < 11/6.
The second achieves an improved upper bound of < 7/4, but at the cost of adding a new dilate (1,2) to X.

The first Katz-Tao configuration

The configuration is depicted in Figure 2, which has n = 6 vertices and m = 7 edges. It has already been demonstrated
in Figure 1 that this configuration is constructible. We claim that

R = {(17 0)917 <1a 1)937 (17 1)947 (07 1)96}
and T = ) is a forcing pair, whence we achieve a score of

T+4 11
6-0 6

as claimed. To verify that this data fixes the configuration we first argue that, using the identifications built into the
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(1,0)

94 ——— g3
(0,1) (0,1)
(1,0)

(1,1) (0,1)
96 — 95
(1,0)

Figure 2: An achievable configuration with score 11/6.

configuration of Figure 2, the four elements of R fix the value of (1,—1)gs. This follows from the following:

(1,-1)g5 = (1,0)g5 — (0,1)gs
= (1,0)g6 — (0,1)g5
= (1,1)g6 — (0,1)gs — (0,1)g5
= (1,1)g1 — (0,1)gs — (0,1)g5
= (0,1)g1 — (0,1)ge + (0,1)g1 — (0,1)g5
= (1,0)g1 — (0,1)gs + (0,1)gs — (0,1)g3
= (1,0)g1 — (0,1)ge + ((0,1)g4 + (1,0)g3) — ((1,0)g3 + (0,1)g3)
= (1,0)g1 — (0,1)gs + (1,1)ga — (1,1)g3

By definition of a forcing pair we may now add gs to the ‘known’ values in 7. We now observe that if we know xg
and yg for any two linearly independent x and y then we may deduce the value of (1, —1)g and hence add ¢ itself
to T. Proceeding in this fashion we can move all the remaining vertices of g; into T": since we know g5 we know
(0,1)gs = (0,1)g2 = (0,1)gs, and (1,1)gs is known as an element of R, whence g3 is known. Arguing similarly we
can find the values of g4, then gy, then go, and finally gs.

The second Katz-Tao configuration

We now give the second argument of Katz and Tao, that establishes

{(1,0),(0,1),(1,2),(1,1)} = 7/4.

The required configuration is depicted in Figure 3. This can easily be checked as constructible as in the previous

(1,0)
g4 —— g3

g1 —— 92
(1,0)

Figure 3: An achievable configuration with score 7/4.

case. THis has n = 4 vertices and m = 4 edges. We claim that

R={(1,1)g1,(1,1)g2,(0,1)g4}
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and T = ) is a forcing pair, whence we achieve a score of

4+3 7

4-0 4
as claimed.
To verify that this data fixes the configuration we first argue that, similar to the above, that using the identi-
fications built into the configuration of Figure 3, the three elements of R fix the value of (1,—1)g3. This follows
from:

(1,-1)gs = (1,0)g3 — (0,1)g3
= (1,0)94 — (0,1)g3
=(1,2)g4 — (0,2)g4 — (0, 1)g3
=(1,2)g1 — (0,2)g4 — (0,1)g2
=(2,2)g1 — (0,2)g4 — (1,0)g1 — (0,1)g2
(2,2)g1 — (0,2)g4 — (1,0)g2 — (0,1)g2
=(2,2)g1 — (1,1)g2 — (0,2)ga.

As before, this determines g3, and by taking two known values of xg for linearly independent x we can then determine
first g4, then g1, and finally gs.

The link to arithmetic Kakeya

In this subsection we sketch how a ‘constructible proof’ as defined in the previous subsection actually implies a bound
for the arithmetic Kakeya problem. We fix a finite set G C Z? such that [x- G| < N for all x € X. We seek an
upper bound on [(1,—1) - G|. Without loss of generality we can assume that g — (1,—1) - ¢ is injective, whence it
suffices to simply give an upper bound on |G| itself.

An X-constructible graph H is to be interpreted as a subset H C G such that if there is an edge between h; and
hs labelled x then we have x- h; = x - ho.

The goal is to find lower and upper bounds for the number of such H that appear as subsets of G, and then
comparing these give the required upper bound on |G|. For the lower bound, we use the following lemma (which
appears as [6, Lemma 2.1]).

Lemma 1. If X,Y1,...,Yy are finite sets and f; : X =Y, for 1 <i <k, with |Y;| < M; for 1 <i <k, then

|X‘k+1
‘(Z‘O, . ,J?k) c Xk+1 N fi(xi_l) = fz($l) f07’ 1 S ’L S k}| Z m
By the iterative nature of a constructible graph, one can use this lemma to give a lower bound of
GI" ,
N < # copies of H

for the number of copies of H that can be found in G, where n is the number of vertices of H and m is the number
of edges.
On the other hand, if (R, T) is a forcing pair then fixing the values of all elements of R (which costs at most NI%l)

and fixing the values of all vertices in T (which costs |G ||T|) determines everything about the copy of H, whence
# copies of H < N'IF |G\|T| .

Comparing these upper bound and lower bounds gives

m+|R|
|G| < N »=1TT ,
and hence this proves AK(«) with
_ m+|R|
~ n—|T]|

as claimed.
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