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Executive summary 
How will advanced AI be developed, and what will its effects be in the world 
at large? What will happen if current trends in scaling up AI development 
persist all the way to 2030? This report examines what this scale-up would 
involve in terms of compute, investment, data, hardware, and energy. We 
explore the role of compute across inference and training, the promise of 
economic value that would be necessary to justify such investment, and 
potential challenges in data availability and energy. 

Based on these predictions for how AI will be developed, we turn to predict 
future AI capabilities, and the impacts they will have in scientific R&D. AI for 
science is the explicit goal of several leading AI developers, and is likely to 
be among the top priorities for AI deployment. Scientific R&D provides a 
valuable lens for understanding what advanced AI will achieve. 

Compute scaling has played a key role in AI development, and will likely 
continue to do so. Compute for training and inference drives improvements 
in AI capabilities, and much progress in AI research has come from 
developing general-purpose methods to enable the use of more compute. 

The trajectory of AI development can be forecasted based on continued 
compute scaling. Scaling has significant implications across many areas of 
AI development: training and inference compute, investment, data, 
hardware, and energy. When we predict that compute scaling will continue, 
we can then examine the consequences within each of these — and how 
they need to scale accordingly to allow compute scaling trends to continue. 

Exponential growth will likely continue to 2030 across all key trends. 
Across training and inference compute, investment, data, hardware, and 
energy, we argue that a continuation of existing trends is feasible. We 
explore each factor in detail, showing how growth could continue to 2030, 
and discussing the most credible reasons for slowdown or acceleration 
before then. We argue the most credible reasons for a deviation from trend 
are changes in societal coordination of AI development (e.g. investor 
sentiment or tight regulation), supply bottlenecks for AI clusters (e.g. chips 
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or energy), or paradigmatic shifts in AI production (e.g. substantial R&D 
automation).  

On current trends, the largest AI models of 2030 will require investments 
of hundreds of billions of dollars, and 1,000x the compute of today’s 
largest models. Investment of this scale is potentially justified if AI can 
automate significant tasks in the economy. The present trend of 3x annual 
AI lab revenue growth would lead to revenues exceeding hundreds of 
billions of dollars before 2030. Finding data for such training runs may be 
challenging, but between synthetic data and multimodal data, this should be 
surmountable. Training runs of this scale will require gigawatts of electrical 
power, approaching the average demand of entire large cities. 

Continued scaling will lead to continued progress in capabilities. Once a 
task begins to show substantive progress with scaling, performance 
tends to predictably improve with further scaling. Existing AI benchmarks, 
despite their limitations, cover many capabilities that would be genuinely 
useful if automated in the real world. Thus, existing benchmarks can inform 
our predictions on AI’s future capabilities. This will be an imperfect view, 
shaped by the representativeness of existing benchmarks, and limited to 
where we can already measure progress. We discuss these challenges 
further in Interlude: from scale to capabilities. Nevertheless, this provides us 
with a compelling baseline prediction for what AI will be able to do.  

At a minimum, AI will act as a valuable tool for scientific R&D. AI systems 
already excel at helping users find relevant information, implement code, 
and perform well-defined prediction tasks based on copious 
domain-specific data. All of these capabilities are set to continue improving. 

For example, AI will be able to implement complex scientific software 
from natural language, assist mathematicians formalising proof sketches, 
and answer open-ended questions about biology protocols. All of these 
examples are taken from existing AI benchmarks showing progress, where 
simple extrapolation suggests they will be solved by 2030. Moreover, AI 
tools for domain-specific applications will continue to improve. For example, 
AI tools already offer state-of-the-art predictions for biomolecule 
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structure/interactions and weather forecasting, and in both areas, progress 
is set to continue. 

Advanced AI will likely lead to a flourishing of desk-based research, 
which will likely benefit from all of the above advances. In 2030, there will 
be more software, more mathematical results, more early-stage molecular 
biology research, more methodological advances in fields such as weather 
prediction. Areas such as software and mathematics have fewer 
experimental bottlenecks, and are particularly likely to benefit from AI 
progress. 

For experimental fields, deployment timelines are contingent on 
hard-to-predict sociotechnical choices. Based on current drug approval 
pipelines, the drugs that will be approved via clinical trials by 2030 are 
already in the R&D pipeline today. AI might be contributing to the drug 
development pipeline by 2030, but within the current regulatory framework, 
it is unlikely that contributions from AI will lead to approved products 
available in the market. 

The result is a world with increasingly abundant AI-mediated digital 
services, knowledge, and analysis. By 2030, it is likely that anything 
physical in scientific R&D will have advanced proportionally less than 
anything digital. However, if these predictions come to pass, there will be 
correspondingly strong incentives (and additional resources) to accelerate 
through these bottlenecks. These efforts may also benefit from AI, but are 
outside the scope of this report. 
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Introduction 
Compute scaling is the key to AI progress. Using more compute for training 
and inference is fundamentally what allows AI capabilities to advance. Other 
crucial factors such as algorithmic innovations and data are important 
primarily in relation to enabling compute scaling. We will argue this more 
thoroughly later, but for now, consider the implications if this is true. 

What can compute scaling predict? 

Assuming that compute scaling drives AI progress, we can predict the near 
future of AI development by extrapolating recent trends in compute scaling, 
and the necessary inputs such as investment, data, electrical power, etc. 
We argue that the baseline for forecasting these things should be trend 
extrapolation: examine how they have grown recently, investigate the 
causes, and assume that recent growth will continue unless there is some 
obvious reason to prevent this. This approach is a common baseline in 
forecasting (Armstrong 2001), and has been applied in several areas of AI 
forecasting (Amodei and Hernandez 2018; Sevilla et al. 2024). 

As long as investment keeps growing, compute can keep scaling on its 
current exponential trend until 2030.1 Then, because AI progress is fairly 
predictable from scaling, we can predict AI capabilities. Prediction requires 
existing progress on a relevant benchmark. Fortunately, many relevant 
benchmarks already provide evidence across economically valuable 
domains, scientific R&D and otherwise. And these predictions of improved 
capabilities suggest that investment in compute is likely to continue 
growing, because such AI capabilities would have large economic value. 

This allows us to predict the inputs to AI development. In a world where we 
"just keep scaling", how much compute is used in 2030? How much is 
invested in AI clusters to achieve that compute? How much electrical power 

1 Why should the trend be exponential growth, rather than some other form? This property 
arises when growth is proportional to current value. This pattern is seen across many 
phenomena in technological and economic progress – for example economic growth, 
investments, microchip advances, etc. 
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is needed to supply them? How much data would there need to be for the 
compute to be productively used? This also allows us to predict the tasks 
that AI is likely to be able to do at a minimum. What sorts of capabilities will 
AI have by 2030? 

Why compute rather than algorithms or data? 

There are two common objections to a scaling-focused view of AI progress: 
algorithmic innovations and data. We argue that although they complicate 
the picture, they remain compatible with it. 

Algorithmic innovations play a vital role, but they are closely paired with 
compute scaling. To paraphrase the Bitter Lesson, the most important and 
effective algorithmic innovations are general-purpose methods that enable 
compute scaling.2,3 Moreover, there is some evidence that algorithmic 
innovations rely on compute scaling for their development. This suggests 
that we should anticipate algorithmic progress, but enabled by, and focused 
on, compute scaling. Nevertheless, this is a key uncertainty. Capabilities 
could improve faster than predicted here, if compute is not a bottleneck. 

Data is essential for AI training, and the quality of datasets can significantly 
influence results. However, there are two reasons to think that compute is 
more of a rate-limiting input. First, compute is more of a bottleneck in the 
current paradigm of AI training, at least for general-purpose LLMs. We 
could scale up for at least a few more years using existing public text data 
and other modalities (Data). Second, it appears increasingly likely that 
inference scaling will make training more compute-intensive, effectively 
using compute to generate data for reasoning training (Data won’t run out 
by 2030, although human-generated text might). Specific data bottlenecks 
can be important within particular applications, and we discuss these 
further in Capabilities in scientific R&D. Hence, we must consider data 

3 Examples of general-purpose compute-leveraging AI innovations from the past few 
decades include Convolutional Neural Networks, GPU acceleration, the Transformer 
architecture, and Large Language Model pretraining. 

2 The Bitter Lesson in brief: “The biggest lesson that can be read from 70 years of AI 
research is that general methods that leverage computation are ultimately the most 
effective, and by a large margin” (Sutton 2019). 
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availability when we investigate scaling, but this remains compatible with a 
scaling-focused view. 

What can’t compute scaling predict? 

What this doesn't allow is predicting when we have general intelligence, i.e. 
AI that can perform any cognitive task at the level of a skilled human. This 
question suffers from two massive uncertainties: gaps in AI benchmarks 
and our understanding of them, and gaps in current AI capabilities that 
might not be filled in the next five years. 

Current benchmarks might not adequately represent the most 
difficult-for-AI tasks that humans do. And not all benchmarks show AI 
progress yet: there are tasks where AI doesn't yet show much improvement 
with scaling so far, for example "autonomously prove a new substantive 
mathematical theorem". It is fundamentally uncertain where AI will have 
reached expert-level performance by the time it solves existing benchmarks 
(that show progress). It is also fundamentally uncertain when AI will solve 
all existing benchmarks, because it only shows progress on some of them. 
Nevertheless, it is fairly certain that AI will solve many challenging 
benchmarks by 2030, and these have clear implications for useful tasks 
that AI will be able to perform. 

Meanwhile, gaps in the capabilities of present-day general-purpose AI 
systems shed some light on the capabilities that AI could fail to achieve by 
2030. AI models excel at identifying relevant information from a large 
training corpus, but frequently veer into illogical hallucinations. They are 
brilliant at ingesting large amounts of data and identifying underlying 
patterns, yet fail to reliably apply reasoning steps that would seem natural to 
a human. Reliability and robustness are problems more broadly, although 
they have at least shown incremental improvement with scaling. AI excels at 
solving closed-ended optimisation problems such as games, yet struggles 
to perform consequential actions in the real world with agency. It can 
perform shallow processing of long content much faster than a human, but 
it struggles to use this long-context information for solving challenging 
problems. There are enough gaps in current AI capabilities that it is hard to 
even be certain which of them are overlapping – perhaps long-context 
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comprehension is related to robustness of reasoning, or perhaps they are 
entirely separate problems. These limitations are related to the challenges 
with designing and interpreting AI benchmarks: adequately benchmarking 
these limitations is also an open problem. 

It is uncertain which of these AI limitations will improve by 2030, and by 
how much. It is uncertain whether these will improve by "just scaling" 
existing systems with small modifications, but also, it is unclear how much 
compute they would need. Consider the example of reasoning models: 
pre-existing systems already used inference scaling, but reinforcement 
learning (RL) made this far more effective, yielding breakthrough results in 
several benchmarks. Does this challenge the view that scaling is the driver 
of progress? Arguing in favour of scaling-driven progress, many 
researchers predicted ahead of time that better inference scaling would be 
necessary, and this arrived after models scaled up sufficiently for reasoning 
RL to work. Furthermore, training scaling holds for RL: using more RL 
training compute improves the capabilities that reasoning models achieve. 
On the other hand, this emphasises the challenges of prediction from 
existing results. The areas where AI struggles today can sometimes see 
breakthrough algorithmic progress, and this is inherently hard to predict.  

Even in a scaling-first view, it is unclear how much more scaling needs to 
happen to reach AGI. It is also unclear whether this will require significant 
algorithmic advances. It is uncertain whether such algorithmic advances, if 
needed, might still happen by 2030. These are the biggest challenges to 
scaling-focused predictions for AI, and particularly when trying to predict 
beyond continuing progress on already-progressing benchmarks. 

Despite these significant challenges, scaling-focused predictions are still 
useful. We can predict a minimal baseline: tasks that we expect AI to 
continue improving at with further scaling. We can then examine how the 
resulting capabilities would affect real work tasks. We can reflect on further 
tasks that are not covered by the baseline, and the implications for 
automation if AI did become capable of these. And then, finally, we can 
follow through to reason about the broader implications this would have 
within people's work. This allows us to bridge two competing views of AI: AI 
as a powerful tool, and AI as a virtual worker. 
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What does scaling predict about AI development? 

We examine several key inputs: compute, investment, data, hardware, and 
energy and the environment. Any of these could undermine continued 
progress – for example, what if compute scaling stops being effective?4 
What if we run out of data? Some of these arguments are stronger than 
others, but we see no single compelling argument to prevent current 
progress continuing to 2030. We explore the implications of this across 
each of the key inputs: surveying how far they might scale, and how they 
might be derailed. 

In brief, we predict that, on current trends, leading AI models in 2030 will be 
trained with 1,000x the compute of today’s leading models. The clusters 
used for training such models would require investment of two hundred 
billion dollars, close to 1% of present-day United States GDP. Training and 
deployment will require gigawatts of electrical power for the largest models, 
and total AI datacentre power could easily grow to 2+% of global electricity 
demand, similar to the level of demand from electric vehicles (around 2% by 
2030 [IEA 2025d]) or the Internet (2-3% in 2025 [Rozite et al. 2023]). 

 
KEY FINDINGS FOR AI DEVELOPMENT TRENDS 
 
Compute: Training compute has increased 4-5x per year since 2010, and is 
likely to continue growing at a similar pace. By 2030, on current trends, the 
largest AI models are likely to be trained with 1,000x the compute used in 
today’s leading models. Scaling up inference compute will be another 
important source of continuing AI improvement. This is unlikely to interfere 
with scaling of training compute, and for a given model, its lifetime 
inference compute will probably be comparable to its training compute. 

Investment: To enable training at this scale, the necessary AI hardware 
would cost hundreds of billions of dollars on current trends. The amortised 
cost of developing individual models would be billions of dollars. These 

4 We discuss further in Scaling is not “hitting a wall”, although it is getting harder that there 
are many different senses in which growing investments could become uncorrelated with 
further AI capabilities improvements. 
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projections align with current AI investments and valuations, as well as 
capital expenditure plans from AI cluster developers. Frontier AI labs 
already earn billions from chatbots, with revenues growing 3x per year in 
the last couple of years. If AI can significantly raise net productivity across 
the economy, it will be worth trillions of dollars. This would justify 
substantial investments in its development. We discuss later how AI could 
achieve such net productivity gains – this depends on both the capabilities 
achieved, and being able to deploy them cost-effectively. 

Data: Datasets for general-purpose AI training recently grew at 2.7x per 
year, but further dataset growth could change significantly. A shift towards 
multimodal and synthetic data may be necessary as high-quality 
human-generated text data becomes scarce. Recent trends in reasoning 
training suggest that growing human-provided data at a much slower rate 
could nevertheless enable compute scaling to continue via synthetic data 
for reasoning training. If AI capabilities continue to improve, then particular 
sources of specialist data will become increasingly valuable: essentially, 
data to enable training on high-value problems. 

Hardware: Total installed capacity for leading AI chips is likely to continue 
growing 2.3x per year, driven by producing more chips with better 
performance.5 Large AI clusters, in line with current trends, are already 
being planned and developed for the largest AI developers. However, it is 
likely that large AI workloads will be increasingly distributed across multiple 
datacentres to ease the demand for electrical power. 

Energy and the environment: Power demands for frontier AI (both training 
and inference) are likely to grow at around 2.1x per year, and AI energy 
demand generally is on track to grow around 1.6x per year. In this case, AI 
datacentres would grow to 1.2% of global electricity demand. Depending on 
the energy mix used to power datacentres, AI electricity use could account 
for 0.03-0.3% of global emissions by 2030. Although significant, this is 
much smaller than projected emissions from commercial flights (2.5%, [IEA 
2025a]). There is demonstrated potential for AI to reduce emissions in areas 
5 2.3x per year growth in installed computing power is slower than the projected 4-5x per 
year growth in frontier training compute. Currently, individual frontier training runs use 
about 2.5% of installed capacity when operating, so there is room for training runs to grow 
faster than total capacity. 
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such as energy production, industrial process optimisation, and transport, 
but this heavily depends on societal decisions about deployment and 
prioritisation. 

What does scaling predict about AI capabilities and 
impacts? 

What capabilities will the AI systems of 2030 achieve, and what impacts 
might it have in the world? This is an incredibly broad question, and to make 
it tractable, we narrow our scope to a critical area: automation of scientific 
R&D. AI for scientific R&D is explicitly the goal of several leading AI 
developers (Altman 2023; Amodei 2024; Google Deepmind, n.d.), and 
occupies an important position in the economy due to its ability to improve 
productivity more broadly.6 We explore AI’s potential for scientific R&D 
across several different areas: software engineering, mathematics, 
molecular biology, and weather prediction. 

As previously discussed, our predictions are anchored on extrapolating 
trends in present-day AI capabilities. There are two main reasons this 
approach could be overly aggressive. The first reason is that if benchmarks 
are not representative of the capabilities they are intended to measure. We 
examine this further within each individual section of Capabilities in 
scientific R&D. In several domains, such as software engineering and 
biology, there is already some empirical evidence suggesting that 
benchmark progress is correlated with real-world progress. The second 
reason is that benchmark progress could be deceptive due to overfitting. 
Although this is a real challenge for comparing models at a point in time, we 
believe it is less of a concern for broadly predicting progress across coming 
years. Benchmarks in the past were also subject to overfitting, but 
nevertheless, solving them went hand-in-hand with related AI capabilities 
progress. If current benchmarks overstate progress due to overfitting, then 

6 This is not to say that R&D will necessarily be the first or most economically significant set 
of activities to see AI automation. There are credible arguments that AI developers face 
larger incentives, and easier challenges, broadly automating many tasks across the 
economy. Nevertheless, AI developers’ explicit focus on R&D motivates us to give it 
attention in this work. 
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our extrapolations will be aggressive, but as long as there is some real 
underlying progress, they will nevertheless be informative. 

Capabilities trends suggest there will be tremendous progress in AI for 
scientific R&D, particularly in areas such as software engineering and 
mathematics, where realistic tasks can be trained on entirely in silico. To 
offer concrete examples: by 2030, existing benchmark progress suggests 
AI will be able to implement complex scientific software from natural 
language, assist mathematicians formalising proof sketches, and answer 
complex questions about biology protocols. We describe this further below. 

 
 
KEY FINDINGS FOR AI CAPABILITIES IN 2030 
 
Software engineering: Many of today’s day-to-day tasks are likely to become automatable 
by AI agents. Existing benchmarks based on well-defined software issues, such as 
SWE-bench, are on track to be solved in 2026. Current progress on solving defined 
hours-long scientific coding and research engineering problems (RE-Bench) is slower, but 
on its current trajectory would be solved in 2027. A key uncertainty is whether human 
supervision will be a bottleneck for more open-ended problems. 

Mathematics: Challenging mathematics reasoning benchmarks, such as FrontierMath, 
could be solved as early as 2027 on current trends. Mathematicians predict AI capable of 
solving such benchmarks might help them by developing sketch arguments, identifying 
relevant knowledge, and formalising proofs. This would allow AI to fulfil a similar role in 
mathematics to coding assistants in software engineering today. Even more than for 
software engineering, a key uncertainty is whether existing mathematics benchmarks are 
valid for predicting such capabilities. The most challenging mathematics benchmarks today 
are further from mathematicians’ day-to-day work than software benchmarks are from that 
of software engineers. It is unclear when AI can rise to the level of autonomously proving 
substantive results, but it is plausible that this will happen before 2030. 

Molecular biology: Public benchmarks for protein-ligand interaction, such as PoseBusters, 
are on track to be solved in the next few years, although the timeline is longer (and 
uncertain) for high-specificity prediction of arbitrary protein-protein interactions, especially 
further from training data. Meanwhile, AI desk research assistants are set to help in biology 
R&D in coming years. Open-ended biology question answering benchmarks are on course 
to be solved by 2030, albeit with large uncertainty. Importantly, advances in basic biology 
R&D are likely to take several years to lead to downstream changes in e.g. pharmaceutical 
development, due to bottlenecks in both wet lab experiments and clinical trials. 
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Weather prediction: AI weather prediction can already improve on traditional methods 
across timescales from hours to weeks. Moreover, AI methods are cost-effective to run, 
and are likely to improve further with additional data. The next big methodology challenges 
lie in improving prediction calibration at current horizons, rather than extending them 
further.7 There are outstanding improvements to be made in two areas in particular: 
forecasting rare events, and integrating additional data sources. Using more historical data 
and more finegrained historical data for training can improve predictions, and more 
real-time sensor inputs could be integrated for better performance in deployment. There 
are important challenges in development and deployment: funding the research, getting 
access to data (particularly at low latencies in deployment), and in some cases even 
permissions to install data recording equipment. Nevertheless, improved weather 
prediction methods could achieve significant benefits in the wider world, helping in areas 
such as power infrastructure, agriculture, transport, emergency response, and everyday 
planning. 

Considering the prospect of general-purpose AI assistants, there is a clear 
vision of AI automating tasks within researchers’ existing work. We describe 
this further in “Claims about AI assistants for scientific R&D”. Meanwhile, for 
areas such as molecular biology and weather prediction, the path ahead is 
less clear: much progress to date has come from narrower AI tools, and 
much human labour (or deployment) could be bottlenecked by interaction 
with the physical world. For such disciplines, it seems likely that desk-based 
research will flourish, enabled by AI, but with experimentation and broader 
impact lagging behind. For example, there may be an increase in the 
quantity and quality of promising candidate molecules for drug 
development, but due to multi-year timelines for clinical trials and drug 
approvals, it is unlikely that much of today’s AI research will be relevant to 
the drugs released in 2030.  

7 Until recently, it was widely accepted that deterministically predicting weather beyond a 
horizon of about three weeks is not possible for simulation-based methods, due to chaos 
effects. Recent work raises the question of whether this was unduly pessimistic (Shen et al. 
2024; Chen et al. 2024). There is also the possibility that integrating more data allows for 
improvement beyond the limits of pure numerical simulations, and existing long-range 
forecasts make use of data, as well as ensembling. Note that weather prediction is distinct 
from climate prediction, which is much longer term, with much lower temporal resolution. 

 
AI in 2030 | Epoch AI 14 
 



 

CLAIMS ABOUT AI ASSISTANTS FOR SCIENTIFIC R&D IN 2030 
​
From most to least certain 

1.​ At minimum, scientific R&D will get AI assistants comparable to coding assistants 
for software engineers today. This is almost certain – as we later examine, there 
are existing benchmarks showing AI progress for the relevant capabilities, and 
existing AI systems being used for literature review, protein design, etc. These 
functionalities have differences compared to software engineering, for example 
more of a focus on reviewing and synthesising large and heterogeneous literature, 
whereas existing AI coding tools are primarily limited to the context of a single 
project. Nevertheless, there are important similarities: offering suggestions in 
response to context, finding relevant information, completing smaller closed-ended 
tasks in their entirety. 

2.​ At minimum, AI assistants are likely to improve day-to-day productivity by 
10-20%, at least within non-experimental work tasks. While less certain, this is 
the starting point from randomised trials on software engineer productivity (see 
Software engineering for discussion of current evidence, including negative 
results). Even if the work tasks of a mathematician or a theoretical biologist are less 
amenable to automation than a software engineer, we already have evidence from 
relevant benchmarks improving, and anticipate many more years of progress still to 
come. 

3.​ The effects could be larger than this. The 10-20% figure was measured for 
software engineers using Copilot beginning in late 2023 (Cui et al. 2025). AI 
systems since then have improved substantially, and early evidence documents the 
improving capabilities of autonomous software engineering agents.  
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AI will be at least as important as the Internet by 2030 

In short, we describe a world in which scaling AI further leads to further 
capabilities, consistent with what we have seen so far. Such capabilities can 
automate meaningful tasks across the economy, scientific R&D among 
them. Scientific R&D is highly valuable and rapidly evolving work where AI 
will be adopted fairly quickly,8 but the same AI advances will be invaluable 
across many sectors. Deployment takes time, and many bottlenecks must 
first be confronted. However, if current trends continue to 2030, a radically 
transformed world will at least be within sight. It may seem extreme to 
predict that entire power plants’ output might be dedicated to AI, but this 
will be justified in such a world, where AI is becoming comparably important 
to the Internet. 

Inevitably, these claims must be caveated with significant uncertainties. 
Perhaps AI capabilities will stall near current levels, because today’s 
algorithms are insufficiently general-purpose. We discuss this in Charting 
the trajectory of future AI capabilities; we argue that simply forecasting 
from existing AI benchmark progress yields these predictions as a fairly 
conservative baseline. Perhaps deployment will be slow, particularly in 
challenging R&D tasks, or in other key parts of the broader economy. In 
Capabilities in scientific R&D, we argue that although deployment is 
challenging, AI technologies have seen the fastest adoption curves in 
history. Current adoption trends are consistent with reaching hundreds of 
billions of dollars in revenue by 2030. Another common objection is that 
mass adoption will be bottlenecked by lack of compute. In Interlude: from 
scale to capabilities, we show that current trends in installed compute argue 
against this. 

These are the predictions that align with current trends, particularly when it 
comes to the next five years of AI development. These predictions may 
have substantial uncertainty, but we argue they should be the baseline 
forecast. By default, the world in 2030 will be filled with highly capable AI 

8 There is survey evidence that academics have rapidly adopted existing AI tools (Oxford 
Academic 2024), and we discuss deployment prospects separately in several scientific 
R&D domains, finding that many potential bottlenecks (inference cost, specialist data) do 
not appear prohibitive. 
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systems deployed at scale, both as scientific tools (e.g. weather prediction 
systems and protein structure modelling) and, at least to some extent, as 
autonomous agents pursuing substantive real-world goals (e.g. in software 
engineering). We must prepare for that world now. 
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Scaling and capabilities 
There are two key parts to our predictions, corresponding to the two main 
sections: Scaling and Capabilities. 

Scaling has arguably been the most fundamental contributor to AI progress. 
Training AI systems with more compute, on more data, has led to stronger 
capabilities. This is not to ignore the role of algorithmic progress – 
generations of researchers and engineers have spent entire careers 
developing innovations to improve AI development. However, the history of 
AI development suggests that these innovations work alongside scaling, 
either enabling scaling or making it more efficient. We discuss below how 
scaling compute improves performance, both during training and inference. 
We also discuss how compute scaling seems likely to continue over the 
next five years. 

The capabilities that result from scaling are fundamental to how AI will be 
used in the world. We discuss how, if scaling is the rate-limiting factor for AI 
development, then we can use scaling predictions to chart the trajectory of 
AI capabilities. This allows us to make predictions about what AI might be 
doing in the world by 2030: we examine existing trends in progress, and 
extrapolate forwards. 
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Scaling compute improves performance

 

GPQA: a benchmark of multiple choice PhD-level science questions. A similar 
pattern of performance improving with compute has been seen across many AI 
benchmarks (Denain 2024). 

The reason to scale compute is straightforward: it improves performance. 
This applies both to training compute and inference compute. Predicting 
performance from scale is not always straightforward, and it is particularly 
difficult to anticipate when an entirely new capability will emerge.9 However, 
once there are initial signs of AI achieving some capability, subsequent 
scaling predictably improves performance in most cases (Owen 2024a; 
Schaeffer et al. 2023). 

9 For example, if AI models perform at random chance on some benchmark, it is hard to predict 
how much more compute will be required for them to start improving. 
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Compute scaling has been studied most extensively for training compute. 
Scaling is most predictable when variables other than compute are held 
constant, for example when a frontier lab is simply “scaling up” a given 
architecture and training recipe. However, even when considering many 
different AI models following different architectures, training approach and 
data mixes, performance on benchmarks is fairly correlated with compute.10 

Inference compute scaling, meanwhile, has recently seen significant 
advances. Previous methods for inference compute scaling tended to be 
inefficient.11 New reasoning LLMs allow for scaling inference compute much 
more cost-effectively.  

11 There are notable exceptions. For example, if we count certain kinds of post-training 
enhancements as inference scaling, then for some applications inference scaling was very 
cost-effective. Nevertheless, for many tasks, especially tasks for which people wanted to 
use language models, inference compute scaling before 2024 was expensive. 

10 For example, in popular science questions benchmark GPQA, performance is correlated 
with training compute with R2 of 0.45 (Denain 2024). 
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Scaling is not “hitting a wall”, although it is getting harder 

There is a recent argument against scaling, which has seen a lot of public 
discussion: that scaling is yielding “diminishing returns”, or is “hitting a wall”. 
There are several senses in which this might be true, and it is important to 
distinguish between them. 

The most aggressive version of “hitting a wall”: scaling laws, which relate 
next-token prediction performance to training compute, may break down. 
There is scarce public evidence to suggest this is true. It may yet happen, 
but we have no reason in particular to expect it. 

A less aggressive version of “hitting a wall”: scaling laws for next-token 
prediction may remain valid, but improvements on downstream tasks are 
worse than expectations based on compute scaling or researchers’ 
intuitions. Journalists have made versions of this claim, attributing it to 
researchers at leading AI labs. From public information, benchmark 
performance seems broadly on trend with compute scaling for the first 
models known to be trained beyond GPT-4 scale such as GPT-4.5 and 
Grok-3.12  

Then, there is a much looser version of “hitting a wall”: scaling laws remain 
accurate, performance improvements are as expected, but further scaling is 
harder than before, e.g. because of the requisite investment, data, power 
constraints, chip production, and latency. This is compelling. Contemporary 
AI training datacenters are reaching hundreds of thousands of GPUs. This is 
approaching the limits of what a single datacenter can power, leading AI 
developers to run multiple-datacenter training (Gemini Team et al. 2023). 
High quality public text data may be growing harder to source.13 We 
investigate these within their respective sections, and on balance find that 
none of these would clearly constrain training scaling trends before 2030. 

13 Although data overall is unlikely to run out, as we discuss in Data won’t run out by 2030, 
although human-generated text might. 

12 GPT-4.5 scores about 20% higher on GPQA compared to GPT-4o, and 26% higher on 
Math Level 5. Across many different models on the same benchmarks, performance recently 
scaled at 14% and 19% per order of magnitude compute scaling. This is consistent with 
scaling roughly as expected. 
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Finally, there is the claim that training scaling is “hitting a wall”, because 
inference scaling is so much more effective after the development of 
reasoning models. Reasoning models are a significant advance, and will 
change the details of training scaling, but we argue that inference compute 
and training compute are likely to scale similarly. Scaling training leads to 
more capable models, which can do more with a given inference budget. 

Inference scaling is related to an important consideration: what we count as 
training compute. Recent frontier models have increasingly relied on 
post-training, and by some reports post-training compute could soon be 
scaled to the same level as pretraining compute (Amodei 2025). Even if 
pretraining scaling were thwarted by a lack of data, several notable 
researchers have predicted that a move to post-training on synthetic data is 
the next era of AI development.  
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Charting the trajectory of future AI capabilities 

The astounding results from the past 15 years of AI development lead to the 
question: where will scaling lead us? What will AI be able to do in the 
future? Will scaling lead to artificial general intelligence (AGI) or beyond - 
for example, AI capable of performing practically any cognitive task 
performed by humans (Morris et al. 2024)? 

We have little certainty on the required training and inference compute for 
AI that can do any cognitive task.14 However, we can chart the trajectory of 
AI capabilities. Scaling clearly allows predictions for AI evaluation 
performance. And we already have AI systems that can achieve impressive 
results in hard evaluations. Hence, we can predict “what sorts of 
capabilities will scaling yield”. We can predict what capabilities AI systems 
will have in tasks such as implementing complex software, performing 
biology literature search, and so on. These predictions will be noisy, but 
they will be grounded in existing progress. This suggests we will be able to 
chart the trajectory towards advanced AI, even if it falls short of AGI. 

Another important challenge to this approach: will compute be the 
rate-limiting factor? Several leading AI researchers predict that advanced AI 
will need more algorithmic innovations along the way,15 but these will be 
devised faster than the necessary scaling up of computing hardware can 
happen. Hence, scaling is likely to be the binding bottleneck.16 There is 
certainly disagreement on this point – AI researchers have a wide range of 
beliefs about timelines to advanced AI (Grace et al. 2024). However, in light 
of recent progress, it is worth taking the possibility seriously. If scaling will 
play a key role, then “straight line extrapolation on graphs” will be a fruitful 
way to think about the development of advanced AI.  

16 See footnote 1. 

15 For example, prior to late 2024, inference-time scaling was relatively inefficient, and 
reasoning models were an innovation addressing this. 

14 Several researchers have attempted to anchor the required compute for AGI using 
equivalent compute used by the neurons in the human brain, or thermodynamic limits from 
evolution. The results have been highly variable in their predictions. 
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Scale 
What resources will go into AI development, five years from now? 
Extrapolating key inputs, such as training compute, allows us to reason 
about how AI development will proceed. It lets us consider how existing 
progress might continue, and where significant changes may be required. 

Our starting point is to examine existing trends, and interrogate the factors 
that could cause them to change, going forward. Extrapolating like this is a 
strong baseline, particularly over shorter time periods. The scaling-up of 
training compute, for example, has been a relatively constant trend at 4x 
per year since the Deep Learning era began in 2010. We could have 
predicted the largest training run in 2024, with reasonable accuracy, simply 
by extrapolating the trend in 2020 (Sevilla and Roldán 2024). 

We first examine scaling of training and inference compute. We argue that 
training compute trends are likely to continue as long as there is sufficient 
investment, although training may shift to focus on synthetic data and/or 
post-training. One reason that scaling of training might cease is if it offered 
disappointing AI capabilities improvements – we argued above that there is 
little evidence of this so far, and scaling-driven deep learning has not "hit a 
wall" in terms of benchmark progress. Meanwhile, recent advances in 
inference compute scaling indicate a complementary way to improve model 
capabilities. With significant uncertainty, we expect AI labs will ultimately 
scale training and inference at similar levels. 

Continued AI compute scaling would require a commensurate scale-up of 
investment. We show how this has happened historically at 2-3x per year, 
and briefly examine how massive investment in AI development could be 
justified by AI-driven productivity improvements. Hardware manufacturers’ 
valuations imply the market expects AI to generate over a trillion dollars 
annually, and supports at least an additional doubling of cluster size 
scale-up. Investments larger than this could be justified by commensurately 
more value – which is supported by recent growth in AI revenues. 
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We then examine trends in training data. We show how general-purpose 
publicly available text data plausibly could be exhausted before 2027. 
Nevertheless, AI developers are unlikely to run out of data for large-scale 
training. This is due to two outstanding sources: synthetic data (particularly 
for reasoning training), and multi-modal data. We also examine the role of 
high value specialist data sources, for example problems that can be 
adapted to generate synthetic data with verifiable solutions. Of particular 
interest for this report, we discuss the importance of data covering 
high-value domains in scientific R&D, such as biomolecule structure and 
interaction data. 

In a scaling-driven view of AI development, hardware is vitally important. 
We show how the largest factor in scaling up training compute was 
increasing cluster sizes, followed by longer training runs and improving 
hardware performance. We argue that scaling of cluster sizes is likely to 
continue, and offer evidence based on the next generation of AI clusters. 
Meanwhile, we offer tentative evidence that training durations could 
plateau, as algorithmic progress and hardware progress discourage them 
from growing too long – and recent reports suggests frontier model training 
has stabilised around two months. 

Finally, we examine the implications of such a scale-up for energy and the 
environment. We show how power demands for frontier training have 
doubled annually, and seems likely to continue. In an extrapolation based on 
power draw from high-end AI chips, AI would make up approximately 1.2% 
of total electricity demand by 2030. Emissions would vary greatly, 
depending on the energy mix underpinning its usage. If datacentres 
exclusively used low carbon intensity power, it could be as low as 0.03% of 
global annual emissions in 2030. If datacentres used an energy mix 
comparable to the grid average, similar to natural gas, it could be as high as 
0.3% of global annual emissions in 2030. In practice, emissions are likely to 
be closer to the second figure, unless solar and other renewables expand 
far beyond current projections.17 Crucially, AI’s overall effect on emissions 
17 Globally, datacentres currently use an energy mix close to the grid average, with US 
datacentres being significantly greener and Chinese datacentres largely powered by coal. 
Projections of datacentre electricity supply suggest more of the growth will be from 
renewable sources, although much of the demand in China may be delivered by coal (IEA 
2025c). 
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would also depend on its uses. Across many applications, AI could reduce 
global emissions by more than it would increase them. Whether this would 
happen in practice depends on hard-to-predict societal choices. 

Overall, we make a simple forecast about scaling: we predict that the 
likeliest outcome is that present trends mostly continue. Training continues 
growing as it has grown since 2010, with inference growing alongside it. To 
support this, investment must also grow, reaching extreme levels. However, 
these investments are justified because investors predict that AI will offer 
commensurate economic value.18 Consequently, the industry continues 
deploying more AI chips, consuming correspondingly more electrical power, 
similar to other key sectors in the economy.  

18 Consultants’ projections of economic value from generative AI in existing work tasks run 
up to trillions of dollars (Chui et al. 2023). In Investment we discuss how current investment 
trends are consistent with this. 

 
AI in 2030 | Epoch AI 26 
 



 

Compute 
Compute underpins modern and historical progress in AI. In particular, the 
shift towards specialised AI hardware and large training clusters drove 
much of the progress in AI capabilities. Meanwhile, more recently, 
specialised reasoning models have enabled efficient scaling of inference 
compute. 

We argue that training compute is likely to continue increasing around 4-5x 
per year until 2030. This trend has been persistent since 2010. Training 
larger models continues to improve AI capabilities. Although further 
compute scaling is challenging in terms of data, hardware, and electrical 
power, all of these technical challenges appear surmountable until 2030. 
The largest uncertainty is whether investments will continue growing, which 
we discuss further in Investment.  

We further argue that growing demand for inference compute is unlikely to 
inhibit training compute growth. Inference costs grow proportionally with 
the number of times a model is used, whereas training compute is an 
upfront investment in model capabilities. For this reason, as well as 
evidence from AI deployment so far, we expect that frontier AI labs will 
scale up both training and inference compute, at around 4-5x per year.  
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Training compute has increased 4-5x per year, and is 
likely to continue 

 

Training compute for notable AI models has grown around 4-5x per year since 2010, 
with a similar pattern for frontier models. Recent frontier models have been 
general-purpose AI models, with most training compute spent on language training. 

Trends in training compute growth have persisted across 14+ years. If they 
continue, the largest models will be trained using 1029 FLOP by 2030 – a 
quantity of compute that would have required running the largest AI cluster 
of 2020 continuously for over 3,000 years.19 Assuming that the necessary 
algorithms to continue scaling are already in place, or will be discovered 
along the way, what could change this trend?20 Some of the most pressing 
potential bottlenecks that have been suggested are investment, running out 

20 By “the necessary algorithms to continue scaling”, we mean both the low-level algorithmic 
changes necessary to use familiar techniques at a larger scale, and higher-level innovations 
such as “better approach for long-context memory”. As we discussed in Charting the 
trajectory of future AI capabilities, researchers differ in opinion on whether the latter 
innovations are on the critical path to advanced AI. 

19 The largest AI clusters of 2020 had peak performance of about 1018 FLOP/s (Pilz et al. 
2025). 
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of data, power constraints, chip production, and latency constraints. None 
of these is clearly an obstacle to continued scaling, as we will discuss 
within their respective sections. 

Investment is a key uncertainty, interacting with all the other potential 
bottlenecks as well as the broader context of markets, society, and 
governance. To continue investing in scaling, relevant actors must see 
sufficient potential for returns. For this to happen, scaling must continue 
improving capabilities. Whether capabilities will improve sufficiently to 
justify investment is more uncertain. This depends on the timelines of key AI 
capabilities (already challenging to forecast), but even these are not 
sufficient to predict investment, because investments can be made far in 
advance of their expected returns. We discuss this further in Investment, 
arguing that current trends and investments support continued scaling, and 
these trends could continue to 2030 if AI is able to accelerate a meaningful 
fraction of remote work tasks.  
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Inference compute scaling won’t detract from training 
compute 

 
Reported allocations of spending and energy allocation suggest that training and 
inference compute are of fairly similar magnitude for large AI developers. Moreover, 
total installed AI compute has grown around 2.3x/year, similar to frontier AI training 
clusters (Pilz et al. 2025), suggesting training has grown similar to inference. 
 

Recent developments in inference compute scaling have been hailed as a 
paradigm shift. Some have linked this to the idea that training scaling will 
slow, or even cease, as AI developers focus on using inference compute. 
However, inference scaling need not imply that training compute scaling will 
cease, because reasoning models also benefit from training compute. 

Evidence to date suggests that compute has been allocated fairly similarly 
between training and inference (see Figure above). Inference has gotten 
more compute (60-80%), but the allocations have remained of a similar 
order of magnitude. More generally, as long as it is possible to trade training 
and inference compute off against one another, there are reasons to expect 
that AI labs should continue allocating similar resources to each. Training 
higher-quality models reduces the amount of inference needed for a given 
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level of performance, and allocating roughly equally across these allows the 
most efficient use of a fixed compute budget (Erdil 2024).21 

Are there any reasons that inference might scale differently to training? The 
main reason we could foresee is if trade-offs between inference and 
training are exhausted. This is difficult to forecast based on existing data, 
where such trade-offs continue to be available.22 A potential example is 
power: if large training runs become bottlenecked by the need to 
concentrate compute in a small number of datacentres, and power for these 
cannot be supplied, or is more expensive, then the balance would shift 
towards inference. Still, for inference to actively detract from training 
scaling, such obstacles need to be extreme. In the particular case of power, 
we see no impediment to scaling on trend until 2030.  

22 One example where the training-inference tradeoff cannot be made for a specific 
developer is open models, where the developer only pays for training compute, but 
inference costs are borne by users. However, open models tend to lag behind the frontier, so 
a different pattern of scaling would have little bearing on the trade-off at the frontier. 

21 Evidence so far suggests that an order of magnitude in training compute can be traded 
off for approximately an order of magnitude in inference compute while keeping model 
capabilities fixed. Consider a lab spending 100 zettaFLOP on inference and 1 zettaFLOP on 
training, for a total budget of 101 zettaFLOP. This trade-off implies the lab could instead 
achieve the same quality-adjusted output by adjusting to 10 zettaFLOP on inference and 10 
zettaFLOP on training, for a total budget of 20 zettaFLOP. The optimal solution is to allocate 
them according to the trade-off ratio of log-compute, so even large trade-off ratios (e.g. 5 
orders of magnitude to 1) lead to fairly similar compute allocations (20% to training). 
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Investment 
Investment is necessary to provide compute. If compute is to continue 
scaling on trend, it will require investment of hundreds of billions of dollars 
by 2030. This is an extreme requirement, but it would be justified if 
investors believe that AI will provide significant economic benefits. If AI 
could raise productivity across the economy, it would eventually generate 
trillions of dollars of economic value, justifying these large investments. 
This matches present-day trends in AI revenue growth. Moreover, we can 
already see that present-day investment patterns and spending plans are 
consistent with scaling until 2028.  
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Frontier model training costs will likely continue growing 
2-3x per year 

 

The costs of training frontier AI models have increased 2.5x per year, and are set to 
continue.  
 

AI training costs have become steadily more expensive. Currently, frontier 
AI models require hardware investments of billions of dollars, plus 
significant energy and labour costs. The amortised cost of compute is 
reaching hundreds of millions of dollars, with no indication of slowing. 

This is fairly likely to continue until 2030. As we discuss elsewhere, the next 
generation of AI clusters are already priced in for 2028, suggesting relevant 
actors are currently willing to invest for at least three more years of scaling.  

What might disrupt these investment trends? Clearly there are external 
events that could upset investment trends, ranging from AI regulation to a 
broader economic downturn or even war. Aside from these, a downturn in 
investment might look like companies pulling back from compute 
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investments for training, focusing on lower-cost inference. This might 
happen in a world in which capabilities advances were relatively stalled. In 
such a world, investors might not expect to capture much value from large 
training investments, and returns might accrue mostly from serving AI tools 
at close-to-existing capabilities levels. 

Plausibly, the trend could shift upwards if continued AI scaling leads to 
increased market confidence in AI’s future returns. In a simplified 
macroeconomic model where a sufficiently large training run can automate 
all work tasks, optimal AI investments rapidly scale to double-digit 
percentages of world GDP (Erdil et al. 2025). 

Overall, there are fairly strong reasons to think present investment trends 
will continue. Investment trends could be justified if AI is expected to 
significantly improve economic productivity. Moreover, current spending 
plans from AI developers and chipmakers are consistent with current 
trends, supporting the prediction that scaling will continue to at least 2028.
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Compute already accounts for half of development 
costs, and is likely to increase 

 

Cost estimates suggest that compute (AI chips, server components, and 
interconnect) is the largest cost in developing frontier AI. Cost estimates are based 
on publicly-reported information (Cottier et al. 2024). 
 

Estimates of model development costs suggest that compute is the largest 
single cost. This includes compute for experiments as well as large training 
runs. The largest non-compute contributor is the cost of labour: researcher 
compensation accounts for a significant portion of spending (Cottier et al. 
2024) and recent reporting suggests researcher salaries may increase 
further (Isaac et al. 2025). If compute scaling continues on trend, it will 
presumably grow as a fraction of spending compared to R&D staff. There is 
significant uncertainty here, as there is little public data on the growth of 
R&D staff costs.  
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If AI revenues grew on trend, they could match these 
investments

 

The largest AI developers are already estimated to earn billions of dollars per year, 
and these revenues have been growing around 2-3x per year in the past few years. 
Projecting this trend to 2030 suggests revenues of hundreds of billions of dollars. 
 

A common objection to a scaling-focused view of AI is the scale of the 
required investments. Would AI developers really invest hundreds of billions 
of dollars to create large-scale compute infrastructure? A relevant source of 
evidence is that existing AI revenue trends match these investments. If this 
revenue growth continues, AI developers would make these large 
investments with clear evidence for their value at each stage. This is also 
consistent with revenue projections for AI hardware: if NVIDIA’s revenue 
grows to match their current price-to-earning ratio, then at current margins 
its annual revenue would need to grow to about $200 billion. This would  
suggest even more than this being spent on AI services (Todd 2024). 
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Data 
Data is vitally important to AI development in several ways. First, and 
arguably most important: large, general-purpose datasets have been vital 
for scaling pretraining of generative systems in language, images, and other 
modalities. Increases in training compute have come from increases in both 
model size and dataset size. Dataset scaling is may be even more important 
for progress today, as model sizes can only scale efficiently with more data. 

Second, there is the necessity of specialist data of various kinds. For 
general-purpose AI models, specialist data is used to post-train a base 
model to create a more user-friendly and safe chat model. Specialist 
post-training data is also important to improve performance on 
widely-useful skills such as reasoning, coding, and planning. For narrower 
applications, such as protein structure prediction, there is a straightforward 
need for models to be trained on corresponding domain-specific data.  
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Datasets will continue growing, but with a different 
composition 

 
Training data for language models has increased 2.7x per year.  
 
Frontier language models have seen their training datasets grow 2.7x per 
year. Earlier language models were trained on specific corpora, for 
purposes such as summarisation or question-answering. The original GPT 
paper marked a lasting shift towards large-scale general-purpose 
pretraining. Subsequently, LLMs began to be trained on increasing 
quantities of text scraped from across the Internet. 

In order to continue scaling up training compute, companies are likely to 
continue growing dataset sizes, although the precise composition of 
datasets could change significantly, as we discuss below. In particular, 
training compute may shift towards reasoning training, which uses smaller 
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quantities of human-generated data.23 This suggests dataset growth may 
slow over the coming years, at least when we limit ourselves to counting 
human-generated data.  

23 For example, DeepSeek R1 reasoning training was estimated to use tens of millions of 
tokens in human-generated verifiable data, but this led to trillions of tokens of generated 
data for RL training. 
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Data won’t run out by 2030, although human-generated 
text might 

 

The stock of human-generated public text is large, estimated between 1014 and 1015 
tokens, but on current trends frontier training runs could use the entire 
(human-generated public text) data stock before 2030, especially if models are 
overtrained. 
 

Data usage trends suggest that the stock of publicly available text data 
could soon be exhausted. However, there are two important 
counterarguments to this: multimodal data and synthetic data. 

General-purpose models are increasingly trained on multimodal data such 
as images, videos, and audio. How to measure the equivalence of these 
data to text is unclear. If we make assumptions based on existing 
tokenisation schemes, multimodal data might increase the public data stock 
10x or more. At historic rates of compute scaling, this would allow 
pretraining datasets to expand in size until 2030. For this to happen, training 
on such data would need to provide commensurate improvements in 
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valuable AI capabilities. Currently, performance in non-text modalities is 
arguably behind text: visual question-answering benchmarks are below 
human performance on simpler questions than pure language benchmarks. 
Hence, we should expect significant scaling of multimodal data in the near 
term, but it is uncertain whether labs would continue this further. 

Synthetic data has recently grown in importance, because it is widely 
believed that the most recent generation of frontier LLMs are making heavy 
use of it. In many domains, it is easy to verify solutions even when they are 
difficult to generate - for example, software engineering problems with 
tests. In other domains, it may be difficult to verify solutions with high 
confidence, but existing LLMs may be capable of acting as a judge. It is 
uncertain how broad and enduring the benefits from synthetic data will be, 
but current progress suggests it will be an important direction for further 
scaling.24 

In early 2024, OpenAI was generating on the order of 100 billion tokens per 
day – and since then, usage has likely increased. This represents a plausible 
quantity of synthetic training data that they could generate. It would 
suggest growing the available data stock by tens of trillions of tokens per 
year. Moreover, training on synthetic data requires more compute than 
simply training as-is – it requires multiple inference passes to have a model 
propose steps, compute to simulate the environment, and potentially 
inference for a judge model to provide RL signal. 

In short: it is likely that traditional pretraining text data sources will soon be 
exhausted, but this is not anticipated to prevent further compute scaling. As 
long as either multimodal data or synthetic data proves tractable and 
worthwhile, there will be enough data to scale to 2030 on current trends. If 
synthetic data proves particularly generalisable, then general-purpose “data 
scaling” may never become a bottleneck. 

24 Why might synthetic data be limited? In short, LLMs can only generate data reflecting 
their learned distribution, and perhaps important capabilities are out-of-distribution. There 
is even some early evidence characterising this, comparing reasoning post-training with 
distillation from a larger pretrained model (Yue et al. 2025). This area remains uncertain, 
but synthetic data of some variety seems likely to play an important role – notably, 
synthetic data can be generated using more than just a base LLM’s learned distribution. 
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Specialist data will become increasingly valuable if 
scaling continues 

This raises the question of whether some kinds of data will become more 
valuable. There is little empirical evidence to draw on, but we can point to 
some intuitive implications for data if scaling continues to improve AI 
capabilities. 

For general-purpose AI models, this suggests that the following data would 
be important: 

Challenging problems with easily verifiable solutions, with value for 
economically valuable capabilities. A canonical example here is 
challenging but easy-to-verify software engineering problems. These 
can be used to generate synthetic data for reasoning post-training, 
and hence would be particularly valuable (Rachitsky 2025). There is 
already evidence here from AI developers’ focus on developing 
challenging benchmarks. 

Data that disproportionately improve “soft” skills of the model, e.g. 
style and tone, to the extent that these aren’t addressable by 
synthetic data. This is fairly speculative, but has some evidence so 
far: AI companies hire researchers to focus on optimising system 
prompts, and invest in large pipelines to prepare curated example 
data. 

Data that expand the model’s knowledge in valuable areas, 
particularly if they do this more efficiently than synthetic data alone. 
For example, many AI developers are building AI coding assistants. 
Data that address key limitations, such as worse performance in a 
programming language with less public code for pretraining, would 
be valuable.25 It is unclear whether this would best be achieved 
through synthetic data or more collection on existing data. An 
important consideration is whether models will become more 
proficient at using search tools to augment trained-in knowledge. In 

25 Many AI developers are focusing on coding as a key application of their products. 
However, performance is unequal across languages, presumably reflecting the training data. 
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this case, the structure of value changes: data that are available via 
search become less important for AI developers to collect. 

For narrower AI models, the general answer is “data covering the 
application”. In this report, we focus on scientific R&D. A relevant example is 
biomolecule structure and interaction data. Pre-existing databases of 
protein experimental structures were essential for training AlphaFold, and 
similar databases will need to cover a broader range of molecules and their 
properties. In general, such data are likely to be crucial when (i) there is no 
reason to expect transfer learning from other data; (ii) it requires specialist 
knowledge, skills, or equipment to collect.  
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Hardware 
Specialised hardware has been essential to the development of modern AI, 
and remains a key driver of progress. We show how most training compute 
growth has come from scaling up cluster sizes, and argue this is likely to 
continue in the next generation of clusters. Finally, we discuss how 
distributed training may make it easier to continue scaling, reducing the 
need for colocation of compute.  
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Training compute growth will come from AI chips, 
probably not from longer training runs 

 

Historically, compute growth has mostly come from increasing the quantity of 
training hardware. Increasing durations and hardware performance have made 
respectively smaller contributions. 
 
For frontier AI models since 2018, most compute scaling has come from 
running more accelerators in parallel, i.e., increasing cluster sizes. 
Hardware performance improvements have contributed less than increasing 
cluster sizes or training duration. 

Algorithmic and hardware progress disincentivise long training runs. If a 
training run is too long, the model risks being overtaken by training that 
starts later and benefits from these (Sevilla et al. 2022). This suggests that 
training runs face limits, and may not grow much further than today’s typical 
duration of months. 

Meanwhile, AI hardware will likely continue improving. Theoretical analysis 
suggests there can be at least 50x further improvement, extending far 
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beyond 2030 on current trends (Ho et al. 2023). Of course, problems could 
arise sooner in practice. Similar to how Dennard scaling ended for 
microprocessors, AI chip progress could slow. There is no evidence of this 
yet, and the forthcoming chip generation suggests progress is likely to 
continue.26 Scaling up the number of deployed AI chips is also likely to 
continue, as we discuss below.  

26 GPU performance per dollar has increased 1.3x per year on average. The NVIDIA B100 has 
about 1.7x the performance of the H100 for a fairly similar price at launch, about 1.5 years 
later. 
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The next generation of AI clusters is already priced in 

 
The upfront investment required to buy hardware for AI clusters has increased 1.9x 
per year. Large clusters with billions worth of chips are already being constructed. 
 
The next generation of AI clusters provides useful evidence about 
continued scaling. The largest NVIDIA-based AI clusters are already 
constructed with over 100,000 H100 GPUs, and larger clusters are in 
construction over the next year. This strongly suggests that compute 
scaling will continue for at least one more generation of AI models. 

There are four main reasons this trend could change: changes in willingness 
to invest, breakthroughs in hardware, breakthroughs in training, or clusters 
being repurposed from training to inference. We have already discussed the 
significant motivation to continue investing in AI development, if capabilities 
keep scaling. We have also discussed how repurposing clusters towards 
inference seems unlikely to happen on a large enough scale to slow training 
trends.  

This leaves the question of breakthroughs in training efficiency, either in 
algorithms or hardware. Such possibilities certainly exist, but given the 
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sustained trend of scaling so far, they do not fit into our default predictions. 
If an algorithmic innovation as large as the Transformer architecture did not 
disrupt trends, it seems unlikely that such disruption will occur in the next 
five years. 
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Training is likely to become distributed across multiple 
clusters 

At the same time as individual AI clusters are reaching unprecedented sizes, 
changes in AI development could make scaling easier by relaxing the need 
for colocation. Until recently, frontier AI models have been trained using 
individual clusters. Several developments suggest this is changing – for 
example, multi-datacentre training officially reported as a contribution in the 
development of Gemini Ultra. This suggests that the number of chips 
involved in a training run will continue to increase, though not necessarily in 
a single datacenter. 

A shift towards synthetic data and inference scaling could even further 
favour multi-cluster training. If synthetic data generation requires large 
amounts of inference compute, then this might more easily be done across 
multiple sites. If inference scaling increases the quality of this generated 
data, then this could favour intensive inference scaling even for the 
purposes of training.27  

27 Other factors might push in favour of centralisation, for example the increasing need to 
secure model weights. However, it is harder to anticipate the overall impact of such goals; 
securing several training clusters, and encrypting communication between them, might be 
sufficient. 
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Energy and the environment 
 

Power demands are likely to continue growing 2.1x per 
year 

 

Power for frontier training runs has grown 2.1x per year, and the largest training runs 
of today are already using over 100 MW. If this trend continues, the largest training 
runs could require approximately 10 GW by 2030.  
 
Frontier AI training power demand has grown 2.1x/year. Training durations 
have also increased in this time, so total energy use for frontier training has 
increased about 3x/year. These numbers reflect the trend in individual 
models’ training – most organisations have trained multiple models in a year, 
as well as using compute for experiments. 

Inference, meanwhile, is less well-documented. AI developers focused 
solely on large frontier models, such as OpenAI, reportedly spent similar 
amounts on inference and training (Snodin et al. 2025). Developers who 
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deploy much smaller models, such as Meta, report dedicating 
approximately 20% of their total AI compute to large-scale training clusters. 
However, it is uncertain what percentage of the rest is dedicated to 
inference, as smaller models also require training (Wu et al. 2022). 

The overall amount of power dedicated to AI (training and inference, 
including non-frontier models) is harder to track, let alone predict. 
Projections based on AI chip production and hyperscaler capital investment 
plans suggest somewhere between 1.5x-2x per year (You and Owen 2025). 
This is nevertheless compatible with individual training runs growing faster: 
they may simply grow to occupy a larger fraction of total AI energy usage. 

The required electrical power is a significant challenge for frontier AI 
training runs. If scaling continues on trend, the largest training runs will 
require about 10 GW by 2030. Such power consumption exceeds the 
generation of all but the largest power plants, and would present enormous 
organisational challenges. This might lead to a slowdown: perhaps scaling 
beyond low gigawatt training runs is logistically unachievable by 2030. On 
the other hand, as previously discussed, frontier AI training runs are already 
beginning to be geographically distributed across multiple datacentres, 
which would temper the challenges. Moreover, there are ways to rapidly 
scale up power delivery, such as solar and batteries, or off-grid gas 
generation (Datta and Fist 2025). If the demand for AI scale-up continues 
on its current trend, the largest training runs should at least reach multiple 
gigawatts, matching planned cluster build-outs (You and Owen 2025). 

If compute trends continue, emissions from AI would 
grow to 0.03-0.3% of the world’s projected total 

So far, AI appears to have increased net carbon emissions via increased 
datacentre energy consumption. For example, Google’s base carbon 
emissions before offsetting increased by 48% between 2019-2024. Much 
of this increase came from AI datacentres (Google Sustainability 2024). 
Datacentres have two emissions sources: datacentre embodied emissions 
(construction and hardware manufacture), and operational emissions 
(datacentre energy supply). In this analysis, we focus on energy supply, 
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estimated to make up over 70% of total emissions for leading AI datacentres 
(Google Sustainability 2024). 

Depending upon the energy mix that will supply datacentres, current trends 
in compute and datacentre energy consumption suggest that AI might make 
up between 0.03% and 0.3% of global emissions. This would be a 
substantial addition, but nevertheless smaller than the existing emissions 
from all datacentres, AI and non-AI (180 million tCO2e in 2025) (IEA 2025c). 
The lower end of this range is an aggressive lower bound, essentially 
relying on massive solar power provision. The higher end of this range is 
based on the current average carbon carbon intensity of the grid, which is 
also close to the carbon intensity of natural gas.  
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WORKED CALCULATIONS FOR AI EMISSIONS UNDER CURRENT TRENDS 
 
Assumptions 

●​ We focus on operational emissions, i.e. not embodied emissions from 
manufacturing and construction. 

●​ We assume the starting point is that AI datacentres used approximately 10 TWh in 
2023. This was from estimates based on 2023 NVIDIA hardware sales, taking the 
higher side of the estimated range. 

●​ Alternative check: 3.7M H100-equivalent available by mid-2024. This is about 23 
TWh if these were all H100 efficiency (700W) and run nonstop. It makes sense that 
this is higher than the earlier 2023 estimate, so they’re fairly consistent. 

●​ We assume starting total world electricity demand is 23,000 TWh, and other than AI 
this continues to grow at its recent trend of 2.7% per year to 26,300 TWh by 2030. 
In this sense, this is a conservative estimate – if non-AI growth is faster than this, as 
it may be with the roll-out of electric vehicles, AI would occupy a smaller fraction of 
the total (IEA 2025b). 

●​ Total global CO2e emissions in 2024 were 37.4 billion metric tons. We 
pessimistically assume that non-AI emissions grow on trend at 7%/decade to 38.7 
billion metric tons. 

If AI power demands continue growing on trend, how much would AI contribute to global 
emissions? 

●​ Assume dedicated AI power consumption doubled annually, i.e. following current 
trends linked to training compute growth of 4-5x per year. By 2030 it would reach 
640 TWh. This would be 2.4% of total electricity demand. 

●​ An energy mix at the carbon intensity of the global grid average (400g CO2e/kWh) 
would suggest emissions of 124 million tCO2e. This is a pessimistic estimate; most 
datacentres use a lot of renewables. This pessimistic estimate would make up 
~0.3% of emissions in 2030.28 

●​ If the carbon intensity were instead that reported for solar panels (40g CO2e/kWh), 
this would be ~0.03% of emissions in 2030. 

28 The most pessimistic imaginable scenario for AI emissions is if the net effect were at the 
carbon intensity of energy sources such as coal. This could conceivably happen if the AI 
energy requirements led to existing coal power stations remaining in use in developed 
countries, and more coal power stations being constructed in countries such as China. Still, 
given the track record of datacentres so far, and the broader societal shift to clean energy 
sources, the current grid average seems a more persuasive lower bound in practice. 
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Energy for AI development will increase, but there is 
scope to reduce emissions 

 
Projected AI emissions by 2030 could be significant (top), although there are many 
opportunities for AI applications to reduce emissions (bottom). Most of the projected 
AI emissions (~95%) are from post-2025 growth. Reduction estimates are 
approximate calculations of potential reduction, i.e. the full extent of what might be 
achieved based on evidence from existing programmes and studies. See Appendix: 
AI’s potential to reduce GHG emissions for more detail. 
 
A natural question is whether AI’s increased emissions could be 
meaningfully offset. There are three potential ways this could happen: (i) a 
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large increase in low-carbon energy, fully offsetting AI datacentres; (ii) AI 
algorithms and hardware sufficiently improve in efficiency to change the 
trend in energy consumption; or (iii) AI applications downstream are able to 
lower carbon emissions elsewhere enough to offset the increase. 

AI datacentres already make significant use of renewable energy from solar, 
wind, and hydroelectric power, although they often use other sources for a 
reliable base load to complement intermittent solar or wind. However, the 
question is not as simple as what energy mix datacentres will use. If 
datacentres relied on renewable energy, but displaced other demand to 
non-renewable sources, the net effect would be to increase emissions. 
Hence the question is more involved: could renewables be increased 
quickly enough to match AI demand growth? 

Building enough clean energy capacity to cover demand from AI 
datacentres would be challenging, but plausible. Renewables are projected 
to grow from 30% of global electricity generation in 2023 to 46% by 2030 
(IEA 2024). Under the IEA’s accelerated timeline for renewable energy 
transition, this could instead reach 60% by 2030. Hence the projected 
electricity demand from AI (1.2%) is smaller than societal choices on energy 
transition. The difference between the projected 46% and feasible 60% 
renewables share of electricity is twelve times larger than the projected 
demand from AI.29 

AI algorithms and hardware improving in efficiency seems likely to continue. 
However, the history of AI so far should give us pause. AI methods have 
already improved orders of magnitude in efficiency. However, this has 
happened in parallel with a massive increases in power consumption. As 
long as there is a strong incentive to scale up hardware for training and/or 
inference, efficiency improvements seem unlikely to reduce net energy 
consumption. The historic trend of efficiency improvements is implicitly 
included in our estimates above. 

29 The analysis of renewable energy’s potential to offset AI emissions becomes tighter if we 
limit its scope to the US and China, assuming that they will host most datacentre activity 
and must provide their own energy. Still, the US is currently constructing approximately 
40GW of renewables per year, after intermittency, which is about 2% of current average 
generation. This is similar to the projected extra demand from AI, similarly suggesting that 
there is still scope to offset it. 
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Downstream applications of AI are the most difficult question to answer 
decisively. Could AI reduce emissions elsewhere in the economy sufficiently 
to offset the emissions for which it is responsible? This will depend greatly 
on the emissions due to AI (how much compute is used, and what energy 
mix underpins it), and the downstream impacts of AI models (what GHG 
emission can they avert?) 

If AI became responsible for a meaningful fraction of total emissions, it 
would be challenging to sufficiently offset impacts in other areas. 
Conversely, for AI to reach such an incredible level of energy consumption, 
it would need to be extremely valuable, so we would expect its societal 
impacts to be large. It is difficult to systematically account for all the 
possible ways that AI could reduce emissions. It seems plausible that AI 
could be used to reduce emissions more than it causes, averting 
single-digit percentages of current global emissions.30 For example, AI can 
be used to better forecast power supply and demand in the electrical grid, 
allowing for more usage of renewables; or AI can be used to optimise 
transport sharing and routing, reducing emissions from cars. This would of 
course be highly dependent on deployment and prioritisation, and relies on 
aggressive estimates of what can be achieved.  

30 In many cases, the AI models considered for climate applications would be much smaller 
than frontier AI models. This points to a potential weakness in trying to assess AI’s overall 
effect: there are many different things that might count as AI. We cover these applications in 
more detail in Appendix: AI’s potential to reduce GHG emissions. 
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Interlude: From scale to 
capabilities 
Evidence: benchmarks, current AI usage, and domain 
experts 

We have argued that, on current trends, the largest AI models of 2030 will 
be trained with 1,000x more compute than today. By 2030, we will have 
seen a jump comparable to the scale-up between GPT-2 and GPT-4. Given 
such continued scaling for AI development, how can we reason about what 
AI in 2030 will be able to do? To ground our discussion, we use three 
sources of evidence: AI evaluations, usage of present AI systems, and 
predictions from domain experts. 

As discussed in Scaling and capabilities, AI evaluation performance tends to 
improve fairly predictably with scale, once performance begins improving 
beyond random chance (Owen 2024a). Therefore, we focus on 
extrapolating from evaluations that show progress so far, and highlighting 
evaluations that are entirely beyond current AI, and hence are less 
predictable. 

For many domains such as software engineering, highly relevant 
benchmarks exist, with a fairly clear link to real world problems, and can be 
used for extrapolation. For other domains, benchmark coverage is less 
clearly representative of real-world work tasks. Still, we can often see 
evidence from individual examples of AI capabilities – for example, there 
may be no systematic benchmark for AI-assisted protein design, but 
individual results inform us on what AI can currently achieve. 

There is an ever-present risk that benchmark results are not reflective of 
real world performance – through lack of representativeness, through 
models overfitting on the metric, through test set contamination, etc. 
Nevertheless, benchmarks play a crucial role in developing AI systems, and 
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are a valuable signal for tracking progress. Interpreted with care, they 
should be informative about AI capabilities. 

Meanwhile, usage of existing AI systems is strong evidence of real-world 
usefulness. This is not always future-facing – it requires that existing AI 
systems are already useful, ideally in a format that matches what we are 
trying to extrapolate. For example, software engineering AI is already widely 
used as a code assistant under close human supervision. This is strong 
evidence that code assistance is useful to programmers, and that 
improvements are likely to offer further benefits. However, this offers only 
weak evidence about the timeline on which independent AI coding agents 
will become practically useful. Nevertheless, where it is present, real world 
usage suggests AI really is ready to contribute to a field. 

Finally, another valuable source of evidence comes from domain experts. 
Many researchers are actively experimenting with present-day AI systems, 
and reflecting on how future AI may change their work. Predictions from 
domain experts provide valuable information on the effects they foresee AI 
having – and the potential obstacles they see for integrating AI into their 
work.  

By synthesising these sources of evidence into qualitative descriptions of AI 
capabilities, and how they might operate in an R&D domain, we paint a 
picture of how AI could accelerate scientific R&D by 2030. But before 
examining these more specific predictions, we discuss the broader context 
in which they will be situated: AI-enabled automation of many tasks across 
the economy. 
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Broad automation across the economy or a focus on 
R&D? 

 
Discussion of AI’s future impacts often focuses on exciting application 
areas, scientific R&D being a prime example. That includes this report: in the 
second half, we will discuss AI’s transformative potential across a range of 
scientific R&D domains. However, there is an argument that in the short and 
medium term (years or even decades), larger economic effects will come 
from broad automation across the economy. This informs how we think 
about automation of R&D tasks. 

Explicit R&D accounts for about 20% of US labour productivity growth in 
recent decades, and in turn this only accounts for about half of real GDP 
growth. In comparison, capital deepening accounts for about half of labour 
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productivity growth.31 The rest of labour productivity growth is attributable 
to “better management, learning-by-doing, knowledge diffusion, etc” (Erdil 
and Barnett 2025). In other words, to maximise near term economic output, 
it is more effective to scale up the effective labour force (automate many 
tasks across the economy and run more of them). Since skills required for 
R&D overlap with these other tasks, it appears likely that broad automation 
will at least happen in tandem with R&D automation. R&D labour is 
particularly valuable labour, and hence a priori we should expect more 
effort dedicated to automating it, but not an exclusive effort. 

Essentially, this is an argument that automation will be a diffuse process 
across the economy. To give a concrete example, think of software 
engineering. There are many software engineering tasks in R&D, and some 
of these are even being automated by AI today. By volume, however, most 
of the software engineering work that is being automated is not in R&D; it is 
helping backend and frontend developers develop commercial and hobbyist 
software. The automation of R&D software engineering may eventually 
contribute more to new technologies that have a greater impact in the long 
run, but based on historical examples this would be a longer timescale, and 
would not be the sole or even primary focus of deployment. 

AI R&D may be particularly salient and well-represented for automation, 
however, and there are arguments that it will be among the first areas to see 
automation. Potentially, AI R&D is a domain where there are increasing 
returns to research effort, and automating it leads to a positive feedback 
loop (Erdil et al. 2024). This is the outcome envisioned in discussions of a 
software-only singularity, such as AI 2027 (Kokotajlo et al. 2025). In this 
report, we have focused on a scenario where algorithmic innovations are 
complementary with compute, and automation of AI R&D overlaps with 
automation of other tasks in the economy. Nevertheless, it is difficult to rule 
out rapid automation of AI R&D, and it is a key way in which AI progress 
could move faster than our projections. 

31 Of course, for capital deepening to occur, R&D must happen in the first place to develop 
useful forms of capital. For example, hospitals can be made more productive by deploying 
advanced MRI machines, but those MRI machines were developed through cycles of 
explicit R&D, technological diffusion, and learning-through-doing. Still, in recent history, 
more economic growth at any point in time has come from deploying already-developed 
products, compared to embarking on new explicit R&D projects. 
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AI automation across the economy could be worth 
trillions of dollars 

 

Different high-level estimates of economic value AI can generate through 
automation. Projected AI company revenues (top, discussed in Investment) are 
broadly consistent with the economic value from a widespread productivity boost, 
i.e. a ~1% increase in GDP. Meanwhile, a more aggressive model of task automation 
(discussed below in `Estimating the economic value of AI`) suggests that doubling 
output for 50% of remote work tasks could increase GDP by 7-10%. 

How valuable might AI be, if it were deployed across the economy? We 
consider several different estimates based on doubling output from 
non-physical work tasks. The answer is highly contingent on AI capabilities 
and deployment, but widespread AI tools could plausibly generate trillions 
of dollars of economic value, simply by improving productivity of 
non-physical work. Even if such gains were not yet achieved by 2030, 
investments could be made on the basis of beliefs about AI’s capabilities 
and eventual deployment, rather than their deployment by that point in time. 

Could we realistically see mass automation rapidly accelerating 50% of 
remote work tasks by 2030? Based on economic history, there are reasons 
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for scepticism, even if it were technically feasible. It would require 
incredibly rapid integration of technology into work. This might be 
accelerated by AI helping coordinate the reallocation, but nevertheless 
seems hard to imagine. On the other hand, AI technologies have seen some 
of the fastest adoption of any technology in history (Hu 2023). Moreover, on 
a longer timescale, there are strong incentives for deployment, given the 
substantial economic advantages. If AI revenues continue their current 
trajectory, then by 2030 it seems likely that either AI will be generating 
trillions of dollars in economic value, or this will be within sight. 

The above projections assume a situation ranging between “AI is a helpful 
tool for half of remote tasks”, and “AI can fully automate half of remote 
tasks”. For a more extreme forecast, consider the implications of a future in 
which AI can perform any task a remote worker can do today. Is it so 
far-fetched to imagine that billions of such AI remote workers would achieve 
large effects in the economy? Technology companies contribute about 10% 
of present day GDP. Such AIs could presumably create similar 
organisations, and this already begins to resemble the aggressive 
projections above. 
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​
ESTIMATING THE ECONOMIC VALUE OF AI 
 
We consider a task-based model of automation, similar to existing literature (Barnett 2025; 
Acemoglu and Restrepo 2018). Labour is allocated to tasks, which taken together produce 
economic output when combined with capital. Automated tasks have their “effective 
labour” increased by a multiplier to reflect the effect of AI. We use this model to predict the 
effect of productivity gains across the economy for widespread AI tools and assistants. 

In such a model, tasks are somewhat complementary. For example, imagine a software 
company that doubles its labour inputs for software engineering tasks (perhaps by hiring 
more software engineers) but without increasing its labour inputs for sales and advertising 
tasks. Would such a company double its revenues? Perhaps if the original software labour 
inputs were far below demand, but generally we should expect that sales would become an 
increasing bottleneck. 

The complementarity between tasks is not obvious. In our modelling, we separately 
consider both fairly substitutable tasks and fairly strong complementarity, based on the 
range of values in the literature.32 This leads to larger and smaller gains from automation 
respectively. 

In the US, approximately 34% of work tasks are estimated to be remote-compatible 
(Barnett 2025). We use this as a proxy for AI exposure, assuming advanced AI could 
accelerate some fraction of remote work.33 We examine different fractions of these being 
automated, ranging from 10% to 50%.34,35 

To simplify analysis, we assume the cost of compute for automated tasks is small 
compared to human wages. There is existing evidence of this in tasks that AI can currently 

35 A common concern about this line of reasoning is whether there would even be enough 
inference compute for so many tasks to be automated. If we assume that a virtual worker 
requires 1014 FLOP/s, similar to some of today’s leading models, then requiring 10% of the 
global population (a third are in the workforce, and they work a third of their time) 
corresponds to about 1023 FLOP/s of compute capacity required. On current trends, by 
2030 there will be 2.6x1023 FLOP/s installed compute capacity for NVIDIA chips alone. 

34 What does it mean when we talk about a percentage of tasks? In a simplified model like 
this one, we assume there are N equal tasks, and consider a percentage of these. In a more 
complex model, tasks can be weighted according to features such as their prevalence in an 
occupation, or the salaries of the occupations in which they are included. Our simple model 
should suffice for approximate calculations however; in practice, there will be incentives to 
automate where automation brings most value. 

33 In a less developed economy, a higher fraction of occupations may be incompatible with 
remote work. However, they also contribute correspondingly less to GDP. 

32 In practice, for real tasks, complementarities will vary by task and sector, but this broad 
assumption is common in the literature. 
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perform.36 Moreover, a given level of AI model output rapidly becomes cheaper to 
generate, based on observations of inference prices for LLMs from the past several years 
(Cottier et al. 2025). We ignore further possible gains from reallocation of human labour. 
We model the economy as a fixed set of tasks, with a fixed allocation of human labour, 
which sees productivity increase in automated tasks. 

Doubling output in 10% of remote tasks would give a 1-2% increase in GDP, producing 
trillions of dollars in economic value. Increasing output by 10% in half of remote tasks 
would have a similar effect (~1% of GDP). Doubling output in half of remote tasks would 
lead to a 6-10% increase in GDP. 

The key question lies is how quickly this growth would be realised. Our economic model 
says nothing about the timeline over which such effects occur. This would depend on 
deployment and adoption. Projected AI revenues are consistent with spending on AI 
roughly in line with 1-2% increase in GDP, suggesting the timeline could be as soon as 
2030. However, spending could pre-empt effects in output, arguing for longer timelines. 
How far in advance could spending happen? A relevant example is investment in the web, 
where it took about a decade for ecommerce sales to match the IT company investments 
of 1999.37 It seems safe to assume that “decades” is a pessimistic upper bound, as long as 
AI actually does achieve the necessary capabilities. 

A common objection is that growth projections from automation are too optimistic because 
they fail to consider Baumol and Engels effects. Both of these are effects that reduce the 
value from productivity improvements, because productivity improvements change the 
relative value or structure of different parts of the economy. We explain each further below. 

Baumol effects limit economic gains from increased productivity when stagnant economic 
sectors demand similar wage increases to sectors that see automation. This can also be 
understood at the level of tasks: the tasks that are difficult to automate end up becoming 
more economically important, and the tasks that are easier to automate end up reducing in 
their marginal value, precisely because they are abundant. Here, Baumol effects are 
implicitly captured by the inter-task complementarity. As effective labour increases for 
automated tasks, the marginal value of labour for non-automated tasks increases 
correspondingly. We do not explicitly model wages, but the economic value of tasks would 
end up setting their wages (in principle), so these are essentially capturing the same 
Baumol effects (Acemoglu et al. 2024). There is also empirical evidence on the overall size 
of Baumol effects, which we discuss below, after covering Engels effects. 

37 Investments in IT reached hundreds of billions of dollars in 1999. Although scholars 
disagree on when the web first showed productivity improvements on this scale, it appears 
that ecommerce sales reached similar levels around 2010 (Winters et al. 2011). Notably, this 
happened despite the infamous Dotcom bubble bursting in late 2000. 

36 In a benchmark of AI research engineering tasks, AI agents could outperform human 
baselines up to a couple of hours, at prices 10x cheaper than corresponding human wages 
(Wijk et al. 2025). 
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Meanwhile, Engels effects limit gains from increased productivity as rising incomes lead to 
more demand for discretionary goods and services. To the extent that these see lower 
productivity gains, Engels effects exacerbate Baumol effects. We do not model Engels 
effects here. Previous empirical estimates suggest that Baumol and Engels effects reduced 
US GDP growth by about 25% between 1948 and 2014 (Baqaee and Farhi 2019), which 
would not substantively change conclusions from this model. 

As will be discussed in How capabilities are deployed, we believe there 
would be enough inference compute for a widespread deployment of AI. On 
current trends, there would be enough AI compute for all existing 
remote-compatible work to be assigned a H100-equivalent. Of course, there 
would be immense engineering challenges in provisioning and serving this 
compute across many requests; however, this extrapolation suggests there 
would be enough physical compute available. 
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Capabilities in scientific 
R&D 
We turn now to examine the specific capabilities that AI is likely to achieve, 
and how they will affect scientific R&D. A recent framework highlights five 
key opportunities for AI in science: knowledge, data, experiments, models, 
and solutions (Griffin et al. 2024). Here, we review several different 
scientific R&D areas, each presenting a different profile in terms of these 
opportunities (italicised throughout). 

In software engineering, on current trends, AI coding assistants and agents 
will likely lead to an abundance of software for well-scoped problems. This 
could clearly contribute to software development for science. AI for 
software engineering would act as a general-purpose productivity boost, 
relevant for practically all of these opportunities. Areas such as data 
analysis and software-based experiments and models would clearly see 
benefits from a large increase in available software engineering. 

In mathematics, it seems likely that AI assistants will follow the path of 
software, becoming increasingly useful and independent over time. AI may 
transform how mathematicians generate and share knowledge, if it can 
reduce barriers to formalisation. AI may also help develop intuitions towards 
full proofs, as a solution tool – directly solving subproblems at a meaningful 
scale. 

In molecular biology, two different visions exist for what will drive AI 
acceleration. Targeted AI tools such as AlphaFold will continue to improve, 
leading to unprecedented data and models concerning key biological 
processes. Meanwhile, general-purpose AI assistants might revolutionise 
knowledge sharing and accelerate experiments through feedback. Both 
pathways will be pursued in parallel, and basic scientific research in fields 
with plentiful data should flourish. However, translation to wider societal 
benefits is likely to happen on a slower timeframe. 
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In weather prediction, AI can enhance models of weather systems and will 
lead to continuing improvements in forecasts for everyday weather and 
extreme weather events. Integrating data from a vast array of different 
modalities raises the prospect of further improvements. Existing societal 
decision-making should benefit from improved forecasts in areas such as 
agriculture, emergency planning, transport, and power and water 
infrastructure. With significant improvement, weather forecasts might be 
used in other areas where currently they are neglected, although this is 
harder to predict. 

How capabilities are deployed 
Across all these fields, there are two recurring topics: 

1.​ How does benchmark progress relate to progress in real-world 
capabilities? 

2.​ When does deployment of those real-world capabilities happen, and 
what effects do they have? 

Benchmark progress is astounding. AI rapidly improves at practically every 
task we have defined in detail, including challenges that domain experts 
find difficult. There are significant caveats for interpreting such results, but 
we argue that even imperfect benchmarks act as an informative signal 
about real progress in AI capabilities. Tasks created for benchmarking tend 
to be artificial in some way – they need to be easily verifiable, they are 
created by researchers aiming to probe current AI’s limitations, etc. 
Nevertheless, benchmark progress clearly reflects some underlying real 
progress. And future benchmarks are informed by the outstanding gaps 
discovered by AI solving the benchmarks. Hence, a benchmark may be 
solved before the underlying capabilities are perfected, but significant 
progress will be made. 

Then, there are key issues in deployment. Particularly common to discuss 
are reliability, integration into a workflow, and cost. Another issue, cutting 
across both development and deployment, is specialist data. We discuss 
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each of these in turn, before using them to examine potential impact for AI 
in scientific R&D within each domain. 

Reliability. When systems are unreliable, it becomes difficult to deploy them 
at scale, and difficult to deploy them autonomously. AI systems can be 
notoriously unreliable, despite showing impressive capabilities in 
benchmarks and demonstrations. For example, LLMs often show degraded 
performance even on small perturbations to benchmark examples 
(Mirzadeh et al. 2024). This is more of a problem in some applications than 
others: for example, if mathematical results can easily be formalised and 
checked, reliability issues are relatively minor. Meanwhile, suggest that 
reliability is also improving over time (Kwa et al. 2025; Vendrow et al. 2025). 
This suggests that deployment will happen first in the areas where reliability 
is less crucial, but that it is unlikely to be a long-term obstacle. 

Integration into a workflow. Using AI systems in real-world work often 
requires complex changes across many mutually interacting tasks. This can 
significantly hamper productivity improvements. For the most part, this is 
quite specific to individual workflows. We discuss deployment prospects 
under each heading. Generally, deployment is easier in areas with less 
serious consequences from mistakes, for example mathematics versus 
biology research. Deployment is easier where there is less need for slow 
empirical feedback loops, for example literature research versus wet lab 
experiments. And deployment is easier where there are fewer data 
availability issues. A key question that repeatedly arises is the nature of the 
AI systems being used: whether they automate tasks fully or partially, and 
the time horizon of the tasks that they automate. 

Cost of deployment. There are two costs involved: costs from changing 
workflows, and inference compute. Changing workflows can change costs 
as tasks are rearranged; for example, a biochemist might be able to use 
biomolecule structure prediction to reduce their time and budget spent on 
lab experiments, but this might also require them to spend more time 
figuring out which experiments remain necessary. These changes can be 
hard to predict, although we discuss their prospects in each section. This is 
closely related to the previous point about reliability. 
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Meanwhile, for inference compute costs, there is significant cause for 
optimism. Evidence to date suggests that AI inference costs for a given level 
of capability rapidly drop over time, 10x per year or faster (Cottier et al. 
2025) If this persists, then even when existing state of the art benchmark 
results use an expensive level of inference compute, they will rapidly 
become cheaper. Relatedly, when AI is capable of performing a task, so far 
it usually costs less than human workers (Wijk et al. 2025). This suggests 
that inference costs would only be a long-term bottleneck if (i) inference 
unit costs plateau, or (ii) AI automation requires performing more instances 
of tasks than at present. 

A useful way to consider the required capacity is to examine trends in total 
installed AI compute, and compare with the required amount of inference 
compute. Total installed AI compute capacity, on current trends, would be 
600 million H100-equivalents by 2030 (Hardware). Where will this compute 
be used? It seems likely that at least half of it would be allocated for 
inference. What would the inference be used for? Automating tasks, ranging 
from image generation to coding to myriad other applications. The global 
workforce is about three billion, working about a third of their time, with 
about a quarter of their tasks being remote-compatible. If each remote 
worker needs an H100-equivalent for their AI usage in 2030, this requires 
about 250 million H100-equivalents – that is, roughly half of the projected 
compute available. In practice, inference compute will be allocated across 
different tasks according to both their value and their susceptibility to 
automation. Nevertheless, this rough calculation suggests that there should 
be enough compute for AI capabilities to be deployed at scale. 

Specialist data. Issues around data availability can affect both deployment 
and development. Data collection is particularly challenging when it is 
expensive or logistically difficult. Examples include real-time deployment 
requiring sensor installations (weather prediction), or specialist wet lab data 
collection (biomolecule interaction). We consider the details of this 
separately within each area. Generally, domains such as software and 
mathematics suffer less from this problem, due to the possibility of easily 
generating data without physical experiments.  
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We provide a high-level summary of these challenges by domain in the 
table below, before discussing each domain in more detail in dedicated 
sections. Across all the R&D areas considered in this report, we see that AI 
opportunities are plentiful, and current trends point towards tremendous 
impacts. This is particularly compelling in areas such as software 
engineering and protein structure prediction, where existing real-world 
usage confirms the initial promise of benchmarks. 
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SUMMARY OF CHALLENGES TO DEPLOYMENT 

 
 

Reliability Integration into 
a workflow 

Cost of 
deployment 

Specialist data 

Software 
engineering 
 

✓✓ 
Quickly 
checkable 
compared to 
time savings, 
errors usually 
not highly 
expensive. 

✓✓ 
Already being 
integrated 
successfully, 
fast feedback 
loops, task time 
horizons 
showing steady 
improvement. 

✓✓ 
Already being 
deployed 
cost-effectively, 
likely to become 
cheaper. 

✓✓ 
Plentiful data 
exists, and 
more can be 
generated fairly 
easily. 

Mathematics 
 

✓ 
Likely to be 
checkable 
compared to 
time savings, 
errors not 
highly 
expensive. 

? 
May require 
shift to 
formalisation, 
little real-world 
success so far. 

✓✓ 
Assuming 
similar to 
software tools 
or existing math 
tools, should be 
cost-effective. 

✓ 
Potential 
bottlenecks, 
synthetic 
generation 
might 
ameliorate 
these. 

Molecular 
biology: 
molecule 
prediction 
 

✘✘ 
Error rates hard 
to characterise, 
not easily 
checkable, 
costly. 

✓✓ 
Several 
real-world 
success stories, 
unclear what 
shape this will 
ultimately take. 

✓✓ 
Inference costs 
cheap based on 
current 
systems, 
unclear costs 
for workflow 
adaptation. 

✘✘ 
Specialist data 
is likely a 
bottleneck, 
requires 
experiments to 
collect. 

Molecular 
biology: AI 
desk research 
assistance 
 

✘ 
Not easily 
checkable. 
 

✓ 
Some 
real-world 
success stories, 
ultimate extent 
unclear. 

✓✓ 
Already being 
deployed 
cost-effectively 
in a limited 
form, likely to 
be cheap. 

✓ 
Fairly plentiful 
literature data, 
no experiments 
needed, risks 
around 
non-paper data.  

Weather 
prediction 

? 
Not easily 
checkable, 
although 
preexisting 
numerical 
methods can 
sanity check. 

✓✓ 
Successfully 
deployed at 
scale. 
 

✓ 
Cheap to run, 
potentially large 
costs from 
workflow 
rearrangement. 

✓ 
Specialist data 
is partly a 
bottleneck, e.g. 
extreme events. 
Existing data 
supports 
valuable uses. 

Qualitative ratings of different challenges, where ticks indicate a challenge is addressable 
or non-blocking, and crosses that it could prevent adoption. Double icons indicate more 
confident conclusions, for example present day adoption or stronger arguments.  
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Software engineering 

 
SWE-bench Verified: a coding benchmark based on solving real-world GitHub 
issues with associated unit tests. Results include those reported from model cards, 
including those with private methodology such as Claude Sonnet 4. The trend would 
be similar if limited to the public scoreboard. 
 
RE-Bench: a research engineering benchmark based on tasks similar to take-home 
assessments for job candidates, taking approximately eight hours for humans.38  
 
AI is already transforming software engineering through code assistants 
and question-answering. By 2030, on current trends, AI will be able to 
autonomously fix issues, implement features, and solve difficult (but 
well-defined) scientific programming problems. 

Software engineering is a particular area of interest for frontier AI 
developers, with both chat interfaces and tools like Copilot extensively 

38 For RE-Bench, the maximum achievable score is uncertain. For these fits, we set 100% 
as a normalised score of 1.5, i.e. the low end of the estimated maximum average score. As 
the benchmark is not yet near saturation, this has little effect on the extrapolation. 
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adopted (Yepis 2024). Moreover, software engineering is a key part of 
scientific R&D across many domains. AI R&D is particularly coupled to 
software engineering, because much of AI research revolves around 
software engineering to devise new algorithms, develop new AI models, etc. 
However, software engineering is an important part of scientific work in 
other fields such as physics, chemistry, biology, etc. 

What does existing progress suggest about AI for software engineering in 
2030? We examine three sources of evidence: real-world usage of AI for 
software engineering today, benchmark progress, and current open 
problems and research as articulated by domain experts. Taken together, 
these suggest AI will dramatically change software engineering, and is 
already having significant effects. However, significant uncertainty remains 
about AI’s capability to autonomously perform challenging tasks end-to-end 
in the real world. Benchmark results suggest rapid progress towards this 
level, but domain experts remain divided, particularly on reliability and 
workflow integration.​
 

Task Relevant progress 

Autocomplete snippets of 
code 

Simple coding benchmarks such as HumanEval 
are solved. 
 
Coding assistant products are deployed widely, 
generate billions of dollars in revenue, and 
improve developer productivity in trials. 

Solve small real-world issues 
with unit tests 

SWE-bench steadily improving. 
 

Solve well-defined scientific 
R&D coding problems from 
natural language description 

SciCode, RE-Bench and similar benchmarks are 
steadily improving. Prominent engineers report 
using recent AI models as a “language to code” 
assistant (Wikipedia 2025, “Vibe coding”). 

Solve real-world coding 
problems priced at hundreds 
to thousands of dollars on a 
freelancer marketplace 

SWE-Lancer benchmark performing above 
chance, and showing steady progress. 
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Complete professional-level 
“capture-the-flag” 
cybersecurity challenges  

Cybench shows steady progress. An 
LLM-based system recently found a new 
vulnerability “in the wild” in the popular sqlite 
package (Big Sleep Team 2024). 

Replicate results in code from 
a research paper 

PaperBench (only the paper provided) shows 
early signs of progress. CORE-Bench 
(repository also provided) shows steady 
progress. 

Solve substantial open-ended 
software engineering 
problems, e.g. developing a 
new database given 
high-level requirements 

Arguably no benchmark thoroughly covers this. 

 
AI systems today can already provide implementations from a natural 
language specification, make suggestions during code editing, and 
autonomously investigate and resolve bugs (Cui et al. 2025; Jimenez et al. 
2024). However, as of today, these AI capabilities are not reliable, and 
typically apply to problems at the easier end of engineers’ work 
(Miserendino et al. 2025). Consider SWE-bench Verified as an example. 
These problems are taken from real GitHub issues, but only those with a 
unit test to provide unambiguous resolution of whether the AI’s attempt 
succeeded. As a result, almost all of these problems touch one or two files, 
and are primarily resolving small issues. The benchmark-leading score of 
today is around 70%. This is much better than random chance, but far from 
reliable. Hence, AI today is mostly used as an assistant, with close 
supervision. Most field studies have found productivity improvements of 
20-70%, varying significantly by developer and area, although one rigorous 
field study found a surprising 20% slowdown (Cui et al. 2025; Becker et al. 
2025).39 

However, many popular benchmarks frame the problem in terms of 
autonomous engineering agents, performing significant software tasks 

39 In a recent study of AI’s effects on software engineering, literature review identified 
seven empirical studies. 6/7 found 20-70% speed-ups or increases in output (Becker et al. 
2025). The remaining study found a surprising 20% slowdown, although it has a claim to 
the most thorough methodology. We take 20% as the starting point, then, but we 
acknowledge there is considerable uncertainty in current evidence. 
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end-to-end (Jimenez et al. 2024; Miserendino et al. 2025; Wijk et al. 2025). 
At its extreme, this could change the nature of software engineering, with 
human engineers overseeing coding agents (Yang et al. 2024). Solving the 
above benchmarks would not clearly entail reaching this extreme outcome: 
in both cases, compared to real-world problems, the benchmarks are more 
crisply-defined, shorter, and conceptually simpler. Nevertheless, solving 
these would be a clear sign of progress. 

Matching this interpretation of overseeing a team of virtual engineers, 
several AI researchers have predicted that AI will be able to autonomously 
perform substantial implementation tasks from their work in the next five 
years, before being able to compete on higher-level planning and creating 
research ideas (Owen 2024b). Recent evidence suggests that there has 
been a steady 3.3x per year increase in the time horizon of autonomous 
software benchmark tasks that AI can perform for a given reliability level 
(Kwa et al. 2025). In AI research, with computationally-expensive 
experiments and training, AI agents would need to be extremely reliable if 
they were themselves allocating significant compute resources, for example 
for ML experiments. However, for lower stakes tasks, such as 
implementation and debugging of a webpage, the picture is more optimistic. 

What challenges could stand in the way of automation-led software 
abundance? Some of the most commonly raised concerns are inference 
costs, reliability (with the resulting need for human supervision), and 
potential AI deficiencies in open-ended problem solving (Owen 2024b). 

So far, inference costs are relatively affordable for software agents: in the 
more challenging benchmark problems that AI has successfully solved, 
inference costs are much lower than the corresponding human wage for 
that problem (Wijk et al. 2025). However, there is the important caveat that 
solving more difficult problems may require further scaling of inference. 
Balanced against this, inference costs for leading models have gotten 
dramatically cheaper, at a rate of 10x per year or more (Cottier et al. 2025). 
Even if there is inference scaling up comparable to scaling of training 
compute (4-5x per year), on current trends the costs would decrease. This 
tentatively suggests that inference costs are unlikely to be a bottleneck in 
the medium term. 
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Another key obstacle for “overseeing a team of virtual engineers” arises 
from reliability. If there is any need for human engineers to intervene and 
dive deep into the code, this would act as an important bottleneck. A natural 
comparison is to overseeing junior engineers today - with the associated 
need for a more experienced engineer to provide occasional detailed 
input.40 If AI reliability remains meaningfully below that of humans, this 
could curb the usefulness of software agents, leaving them closer to 
extended coding assistants. 

Meanwhile, the question of whether AI will be able to autonomously solve 
more open-ended problems remains difficult to predict. Recent benchmarks 
such as SWE-Lancer suggest that real world freelancer tasks are already 
within reach of software agents, despite being more open-ended than 
SWE-bench tasks.41 AI agents may soon be able to solve tasks comparable 
to hours-long freelancer software jobs, with more difficult tasks remaining 
accessible only to an AI-human combination. On current trends this seems 
likely to continue improving, leading to a world in which, at a minimum, 
software engineering agents for prototyping or analysis are cheap and 
ubiquitous.  

41 SWE-Lancer tasks use end-to-end tests rather than unit tests as in SWE-bench. This 
should allow for more open-ended tasks, as the tests do not hint to the agent at how to 
implement code. 

40 If AI agents continue to struggle with reliability, then they might be particularly difficult to 
deploy for software engineering in R&D, where results often are less easily checkable than, 
for example, web development (Owen 2024b). For this reason among others, domain 
experts are divided on how soon they would predict such a transformative shift to hit 
software engineering for ML experiments, compared to other areas. 
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Mathematics 

 
Results show general-purpose LLMs only, excluding domain-specific systems like 
AlphaProof and AlphaGeometry2 (mid-2024). 
 
AIME: a high school mathematics exam used for determining entry to the US 
Mathematical Olympiad, integer answers. 
 
USAMO: US Mathematical Olympiad, a high school mathematics exam with 
proof-based answers. 
 
FrontierMath: a mathematics benchmark focused on challenging questions up to 
expert level, but still offering straightforwardly-verifiable answers (numeric or simple 
expressions). 
 

AI for mathematics may soon be able to act as a research assistant, trying 
to flesh out proof sketches or intuitions. Early accounts from 
mathematicians already document AI being helpful in their work. However, 
it may be necessary to make significant changes to mathematicians’ 
workflows for AI tools to be widely used. Notable mathematicians differ 
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greatly in how relevant they think existing mathematical AI benchmarks are 
for their work, as well as in their predictions for how soon AI will be able to 
develop mathematical results autonomously, rather than as an assistant. 
 
Benchmarks for mathematics are further from professional mathematicians’ 
work tasks than software engineering benchmarks. Many common 
mathematics benchmarks focus on exams - school exams, for example, or 
more challenging invitational competitions including various Mathematical 
Olympiads. These may be informative about AI progress, but have a less 
natural interpretation in terms of useful capabilities once the benchmarks 
are solved. A notable exception is FrontierMath, which attempts to formulate 
mathematical questions that are similar to those faced by early-career 
research mathematicians, albeit while remaining easily verifiable. 

Several notable mathematicians emphasised the significant difficulty of 
FrontierMath’s hardest problems.42 Subsequent rapid progress on this 
benchmark raises the question of whether the problems are as difficult as 
they seemed. One potential issue is that, in order to make the solutions 
verifiable, many problems use numerical answers. Numerical problems may 
be susceptible to brute force, despite the designers’ intention to avoid this. 
Hence there is a risk that the benchmark overestimates progress in 
challenging mathematical reasoning. Nevertheless, separate to the question 
of benchmark validity, several prominent mathematicians anticipate rapid 
progress in AI for mathematics, even predicting a (highly uncertain) 
ten-year timeline to full automation of mathematical research (Glazer et al. 
2024).43 

What would the implications be for AI in mathematics if ambitious 
mathematics benchmarks like FrontierMath were solved? Mathematicians 
have shared their ideas of what utility an AI capable of solving such 
problems would contribute to their work. They suggested such an AI might 

43 For example, Richard Borcherds stated, “When is AI going to overtake humans at 
research? Well, not in the next year, and almost certainly in the next 100 years. So I’ll go for 
about ten years or so.” 

42 For example, Terence Tao stated of the hardest subset of problems, “These are extremely 
challenging. I think that in the near term basically the only way to solve them, short of having 
a real domain expert in the area, is by a combination of a semi-expert like a graduate student 
in a related field, maybe paired with some combination of a modern AI and lots of other 
algebra packages...” 
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“verify calculations, test conjectures, and handle routine technical work 
while leaving broader research direction and insight generation to humans” 
(Glazer et al. 2024). Another area, where several mathematicians are 
interested, is using AI for formalisation and communication.44 

Task Relevant progress 

Simple arithmetic 
 

GSM8k and similar benchmarks are solved. 
However, even in fairly recent models, reliability is 
still an issue.  

Solve typical school math 
exams 
 

School-finishing exams like SAT and GRE are 
solved, although reliability can be poor. 

Solve challenging 
high-school math 
competitions 

Exams with numerical solutions, such as AIME have 
been largely solved. Similar exams requiring proofs, 
such as USAMO, show sharp progress from 
Gemini-2.5, suggesting they may soon follow. 
Moreover, specialised systems such as AlphaProof 
have performed better, but focusing specifically on 
formal settings where they can be trained via 
self-play. 
 
PutnamBench (formal proofs for Putnam exam 
questions) shows some signs of early progress, but 
not enough to be confident in a timeline. 

Solve challenging 
expert-level ~days-long 
questions with numeric 
answers 

FrontierMath has seen rapid progress, although 
interpretation is challenging in light of varying 
difficulty tiers and model types. 

Formalise proofs from 
informal language 

This area remains nascent, with most projects 
testing the formalization of natural language 
problem statements drawn from undergraduate 
education and math competitions, and few models 
systematically benchmarked (Azerbayev et al. 
2023). 

Prove substantive lemmas 
or theorems 

No systematic benchmark exists yet. Specialist AI 
systems have helped mathematicians identify 

44 For example, Terence Tao stated, “If I were to write a math paper, I would explain the proof 
to a proof assistant… and they would help formalize it.” 
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promising conjectures or prove results, albeit 
requiring significant mathematician input. 

​
Complicating our analysis, there are several narrower AI systems for 
mathematics, many of which have achieved some of the most impressive 
results to date. Formal systems such as AlphaProof achieved high scores on 
IMO questions before general-purpose systems did, but have not yet been 
documented as being useful in research. Other AI tools have been used to 
guide researchers towards promising conjectures or optimise problems 
under constraints, leading to novel results with significant mathematician 
input (Davies et al. 2021; Romera-Paredes et al. 2024; Novikov et al. 2025). 
This has significant overlap with earlier work on experimental mathematics, 
but can take advantage of deep learning methods to detect patterns that 
traditional machine learning would not detect. These results came from 
both narrow AI systems and task-specific systems built on LLMs, used in 
combination with extensive problem-specific setup work from domain 
experts.45 It is plausible that narrower AI tools will become useful at scale 
before general-purpose systems, or even at the same time. This largely 
depends on broader uncertainties around near-term AI capabilities. 

Unlike software engineering, there are no systematic studies examining 
productivity improvements for mathematicians from existing AI. However, 
there are notable claims of mathematicians using AI to assist in their work. 
In addition to the above results from narrower AI-enabled tools, 
mathematicians have shared their early impressions of working with 
general-purpose LLMs. Current accounts suggest they are far from reliably 
helpful, but sometimes meaningfully help in day-to-day research, for 
example successfully formulating a derivation (Burnham 2025).46 

46 For example, using o1 was like “trying to advise a mediocre, but not completely 
incompetent, (static simulation of a) graduate student [...] [i]t may only take one or two 
further iterations of improved capability (and integration with other tools, such as computer 
algebra packages and proof assistants) until the level of "(static simulation of a) competent 
graduate student" is reached, at which point I could see this tool being of significant use in 
research level tasks” (Tao 2024). 

45 For example, a subsequent review preprint described how “[d]eep mathematical 
knowledge of the problem was required here at practically every stage: In designing the DL 
architecture in step 1, in creating the data set in step 2, in choosing the experiments in step 4, 
in interpreting them in step 5. and of course in proving the theorem in step 6” (Davis 2021). 
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What could hinder real-world deployment of AI for mathematics? Several 
mathematicians have noted the importance of affordable deployment, lack 
of specialist data, and the importance of solving open-ended problems 
(Glazer et al. 2024). 

For the reasons discussed in Software Engineering, there is reason to 
expect that even if inference compute scales up dramatically, cost 
reductions are likely to compensate for this. Meanwhile, a lack of specialist 
data could be an important bottleneck: many research domains rely on a 
small number of relevant papers, and depending on the data efficiency of AI 
systems, there simply may not be enough data for useful learning. A lack of 
data may also be related to the concern about open-ended problem solving: 
mathematicians publish proofs for their most compelling problems, rather 
than sharing extensive documentation of their reasoning process, errors, 
and progress (Glazer et al. 2024). 

Finally, a flourishing of AI-assisted mathematical results could be 
bottlenecked by ways of working: to keep up with a large volume of 
AI-generated results, occasionally prone to hallucination or subtle error, 
formalisation would need to become more common, which might bring its 
own challenges (Yang et al. 2024).  

Nevertheless, the overall picture from AI progress and expert opinion is 
fairly optimistic: AI is likely to contribute to mathematics research, at the 
very least becoming a helpful assistant similar to those used in software 
engineering today. We expect the pace of research discoveries to increase 
commensurately with how powerful these assistants become. By default it 
will take years for new mathematical results to become relevant for applied 
research, suggesting few visible impacts on broader society to begin with 
(Frontier Economics 2014). Existing research on the economic benefits of 
mathematics R&D tends to focus on applied R&D, counting the GDP 
contribution of occupations involved in computer science, data analysis, etc 
(Deloitte 2013). In the long run, increased output from basic mathematics 
R&D should have substantial spillover benefits for applied uses.47 Gradually, 

47 Social returns to scientific R&D in general have been estimated at about twice those of 
private benefits, but with relatively scarce data (Frontier Economics 2014). Estimates of the 
rate of return on marginal R&D funding are high, centered around 50% per year (ibid). 
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an AI-enabled scale-up of mathematics research will transform the more 
applied sciences, with results likely to diffuse across cryptography, 
statistics, computing, physics, and beyond.  
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Molecular biology 

 
PoseBusters-v2: a benchmark for protein-ligand docking (spatial interaction). We 
only include blind results, where the protein’s binding pocket is not provided. 
 
ProtocolQA: a benchmark for questions about biology wet lab protocols, here 
evaluated without multiple choice answers. 
 
Protein-protein interactions: there is significant progress predicting protein-protein 
interactions, but predictions for arbitrary pairs have a high false positive rate. Our 
illustration of progress is highly uncertain, and would depend on benchmark details. 
 
Scientists envision two different paths for AI in molecular biology: 
transformative AI tools for tasks like biomolecule modelling, and 
general-purpose AI assistants to automate parts of the research process. 
Tools such as AlphaFold are already revolutionising the field, and will 
expand to predict more properties for more complex structures. Meanwhile, 
AI assistants for biology research are at an early stage, but offer the 
promise of accelerating many key R&D steps. 
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There are many different applications in biology where AI is already 
showing great promise. AI is already being investigated across many areas: 
prediction of biomolecular structures and interactions, analysis and editing 
of genomic data, imaging, lab robotics, and more. Due to the breadth of the 
field, we focus on two key areas that represent the divide between 
specialised tools and general-purpose agents: AI for biomolecule prediction 
and design (particularly proteins), and biology desk research. Other 
research areas could be vitally important, but are either less 
straightforwardly within the purview of AI (such as robotics and imaging for 
wet lab research), or less straightforward to analyse. 

AI for prediction and modelling of biomolecules has seen staggering 
success. AlphaFold2’s principal authors recently shared the 2024 Nobel 
Prize for Chemistry.48 AI approaches such as AlphaFold have revolutionised 
protein structure prediction, achieving near-experimental accuracy for many 
well-characterised protein domains in their equilibrium state.49 Subsequent 
work has attempted to carry these successes over to other problems, such 
as other biomolecules like DNA/RNA, dynamic structure, molecule 
interaction, and even target identification and protein design.50 

Task Relevant progress 

Predict protein 
equilibrium structure  
 

Solved for basic structures (AlphaFold), though 
remaining challenges around hallucination, 
intrinsically disordered proteins, etc 

Predict structures for 
other biomolecules / 
complexes 

Progressing on relevant benchmarks such as 
held-out sets from PDB, CASP competitions, etc. 

50 There is a divide between relatively specialised models such as AlphaFold and 
RoseTTAFold, which primarily use spatial data, and more general protein language models 
(PLMs) such as Evo and ProGen, which are trained on a large corpus of biological text data. 
We separate our discussion into narrow tools versus general-purpose AI, but the distinction 
is fuzzy. Potentially, the best general-purpose AI assistants for biology will incorporate usage 
of tools such as AlphaFold, or be additionally trained on domain-specific biomolecules 
similarly to Evo. 

49 Within the prediction of equilibrium structure for single proteins, challenges remain for 
intrinsically disordered regions, protein complexes, and certain novel folds. 

48 David Baker shared the same year’s prize for advances in protein design. Many of his lab’s 
tools did not use AI approaches originally, although for example RoseTTAFold does. 
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Design custom binders 
without high-throughput 
screening 

Achieved in demonstration examples (AlphaProteo), 
but not necessarily for arbitrary targets. 

Predict single nucleotide 
variation effects 

Steady progress on benchmarks such as ClinVar.  

Predict arbitrary protein 
interaction and binding 

Docking benchmarks like PoseBusters show 
progress, but ad hoc trials suggest current methods 
struggle for arbitrary real-world protein-protein 
interaction (Dickinson, 2024). 

Predict small molecule 
interaction 

Small molecule binding prediction performance 
struggles to rise above chance on an “in the wild” 
benchmark (Leash Bio, 2024). 

Predict properties such 
as efficacy or toxicity  

There is much active research interest in this topic, 
and individual results suggesting AI methods 
perform better than chance. These are usually 
considered within pre-specified domains, with 
significant expert setup, rather than “predict 
properties for an arbitrary biomolecule”. 

 
Meanwhile, AI for desk research tasks has only seen advances more 
recently, with LLMs recently solving some of the first multiple-choice 
benchmarks on challenging literature search questions, reasoning about 
experimental protocols, and interpreting figures (Laurent et al. 2024). 
Currently, AI for biology research tasks mostly acts as an expressive but 
error-prone search engine for specialist knowledge. In biology, the most 
visibly impressive results from AI so far are from “tools” rather than agents, 
although recent exciting results exist where AI literature research tools have 
suggested targets for drug repurposing, novel treatments, and other 
applications (Gottweis et al. 2025; Lu et al. 2024; Huang et al. 2024).  
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Task Relevant progress 

Answer school-level questions 
about biology 
 

Biology categories within MMLU and school 
exam benchmarks are solved. Robustness 
and reliability are an outstanding challenge, 
but appear to be steadily improving. 

Answer challenging 
graduate-level exam-style 
multiple choice biology questions 

Benchmarks such as GPQA are making 
steady progress. 

Answer open-ended questions 
about biology wet lab protocols 

Open-ended ProtocolQA and BioLP are 
making steady progress. 

Answer well-defined questions 
about recent biology research 
literature 

Benchmarks such as LitQA show steady 
progress. 

Perform end-to-end 
bioinformatics analyses 
 

BixBench does not yet show clear progress, 
but is recently released. Benchmarks with 
less challenging bioinformatic tasks, such 
as BioCoder and ScienceAgentBench, show 
steady progress. 

Answer open-ended biology 
research questions, propose 
hypotheses and identify relevant 
experiments and related work 

No end-to-end benchmark fully covers this. 
Demonstration results from “co-scientists” 
and similar systems suggest progress. 

 
What might AI-assisted biology R&D look like in 2030? Biomolecule 
prediction benchmarks and real-world usage offer a hint. Again, we focus 
this discussion on the specific areas around biochemistry, drug targets, and 
ultimately drug development. Benchmark progress suggests that other 
biomolecule prediction tasks (RNA, DNA, protein complexes, small 
molecules, interaction, etc) will see similar prediction advances to proteins, 
as long as sufficient data can be found or generated. Structure prediction 
will improve steadily, enabling better prediction of other properties like 
receptor binding (Zambaldi et al. 2024).51 Lab experiments will remain vitally 
51 How far can this prediction improve? To give a sense of current methods, recent results 
from RFDiffusion and AlphaProteo suggest that researchers can predict binding affinity well 
enough to design novel proteins to bind to receptors without high-throughput screening. 
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important, but investigating a given target should require fewer hours in the 
lab. Meanwhile, exploring literature, debugging experiments, and analysing 
results are likely to be assisted by AI – which seems likely to saturate 
existing benchmarks on desk research and protocol debugging. Expert 
disagree on which will contribute more, but expect both areas to advance. 

This should significantly accelerate early R&D: coming up with a new drug 
target and investigating it should require less researcher time overall, while 
steering towards drugs with better characteristics (higher binding affinity, 
lower toxicity, fewer interactions with other targets, etc). However, 
downstream drug development is likely to see modest end-to-end 
productivity effects by 2030, particularly given the time requirements and 
regulatory processes for new biomedical treatments. A new drug typically 
takes eight years to go through trials and approval (Brown et al. 2021). It is 
likely that the drugs approved in 2030 are those already in the trial pipeline 
today, and hence any AI involvement in their early development already 
occurred in the last few years.52 

This is not to downplay the longer-term impacts of AI. The long duration of 
pharmaceutical pipelines also underpins the opportunity for AI to accelerate 
drug development. Historically, for a given medicine, most time is spent in 
its early development, with one study identifying a median of twenty-eight 
years between initiation and the first clinical trials for a novel target 
(McNamee et al. 2017). Accelerating early research could correspondingly 
accelerate these timelines. 

In the longer term, in silico predictions may lead to treatments that are 
substantially better than those currently being trialled. AI-designed 
treatments could be more efficacious, have fewer side effects, and see 
higher trial success rates, which in turn could improve the economics of 
drug development. Currently, about half of pharmaceutical R&D spending is 

52 Arguably, there are already AI-enabled therapeutic drugs, if AI is defined more broadly to 
include pre-LLM methods. There are even studies suggesting such drugs may have higher 
approval rates than the industry average. However, such results do not seem highly relevant 
to the focus of this discussion (KP Jayatunga et al. 2024; Lowe 2024a).  

However, an “in the wild” experiment suggests that interaction cannot yet be predicted in a 
single round for arbitrary targets (Dickinson, 2024). Given progress in existing protein 
docking benchmarks, it seems plausible that by 2030 interactions should be fairly 
predictable for randomly-chosen targets, similar to protein structure today. 
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on clinical trials focused on these properties, with failure rates of about 
50% per phase across three phases (Sun et al. 2022). Even ignoring other 
benefits, reducing the frequency of expensive late stage failures could be 
transformative. There is also the possibility that entirely new biomedical 
processes may be facilitated by AI design and organisation, conceptually 
similar to processes such as mRNA vaccines, which can be safely renewed 
year-to-year without having to undergo approval from scratch (Brown et al. 
2021). Hundreds of billions of dollars are spent on pharmaceutical R&D each 
year, and trillions on medicines, meaning downstream impacts would be 
highly valuable. 

Researchers have frequently discussed two other important potential 
bottlenecks, such as the need for specialist biology data, or the ongoing 
importance of wet lab experiments (Lowe 2024b). Specialist data is 
crucially important, and it is an open question whether other problems will 
be as amenable to data collection as protein structure prediction.53 One 
promising sign is that several initiatives are already collecting biological 
data in massive quantities for biology AI development.54 Given the 
significant incentive to continue improving biology AI, data collection seems 
likely to expand further.55 Conversely, wet lab experiments are almost 
certain to continue as an important part of day-to-day work, and here the 
uncertainty is how significant that bottleneck will be. This will largely 
depend on the extent to which improved AI methods can reduce the volume 
of experiments required. In several real world examples, protein structure 
prediction has substantially reduced experimental durations.56 Despite 

56 For example, from malaria researcher Matthew Higgins, “We’d been battling with this 
problem for years, trying to get the details we needed. Then we added AlphaFold into the 

55 As well as specialist data for prediction models, there is uncertainty whether data is also 
a bottleneck for literature research agents, for example due to publication bias. A 
counterargument is that the corpus of publications is also what is available to human 
researchers, who nevertheless learn to conduct literature research. 

54 For example, Leash Bio have even used some of their datasets for new AI challenges on 
small molecule - protein interaction. 

53 Indeed, one pessimistic description comes from the National Academies of the Sciences’ 
report on AI in the life sciences: “However, with the notable exception of nucleic acid 
sequences and structural data, data in the life sciences are fragmented, and robust, 
reliable, and well-curated data that are amenable to model training are scarce. Both 
top-down generation of high-quality datasets and bottom-up aggregation of diverse and 
smaller datasets alongside tools for data harmonization are valid approaches to address 
the paucity of biological data.” 
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concerns around data and the need for experiments, AI should meaningfully 
accelerate biology R&D.  

mix. And when we combined our model with AlphaFold’s predicted structure, we could 
suddenly see how the whole system worked.” Quotes like these cannot determine the overall 
time saved on average across many projects, but do provide evidence that computational 
methods sometimes save significant amounts of time in practice. 
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Weather prediction 

 

Timeline of key milestones in weather prediction AI, as well as anticipated 
developments for the future. 
 
AI weather prediction can already improve on traditional methods across 
weather prediction tasks from hours up to weeks. Moreover, AI methods are 
cost-effective to run, and could improve further with the careful collection 
of more data. The next big challenges lie in improving existing predictions, 
predicting rarer events, potentially predicting further ahead, and making 
use of improved predictions to achieve benefits in the wider world. 
 
Existing benchmarks for AI in weather prediction mostly show AI is on par 
with, or better than, state of the art ensembles of numerical models for 
horizons of hours to tens of days (Rasp et al. 2024). For prediction of key 
variables such as temperature, pressure, wind, and precipitation, AI 
methods can outperform by 10-30% (Price et al. 2024).57 Such systems are 
trained on datasets of historic weather, but these in turn depend on 

57 This is true of individual forecasts for specific variables at specific locations and times, 
and more broadly true of the relative economic value of ensemble forecasts. (Relative 
economic value is not an all-things-considered estimate of the dollar value of improved 
forecasting, but a predefined metric of forecast value for a range of users across different 
decisions and tradeoffs.) 
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numerical weather models, so in an important sense AI methods augment 
numerical models rather than fully replacing them.58 

It is unclear what further accuracy improvements can be achieved for short- 
and medium-term point forecasting beyond the numerical baseline, 
although researchers suggest they will continue, in addition to the 
possibility of finetuning on other data (Price et al. 2024). Perhaps more 
importantly, researchers expect further improvement in other key areas, 
such as better calibration of probabilistic models, particularly for rare 
weather events such as hurricanes.59,60 

How will AI affect weather prediction R&D by 2030? We focus on narrow AI 
for weather prediction, although presumably there would be advances in 
general-purpose research agents somewhat like those discussed in 
previous sections. Numerical weather prediction research will doubtless 
continue, both as a tool for direct prediction and as a basis for AI 
augmentation. Potentially, empirical findings learned by AI systems could 
lead researchers towards important new effects for modelling. However, it 
also seems likely that the field will see a flourishing in empirical research: 
data collection, integrating new data sources into models, and validating 
their performance.61 After collection, this research is likely to be relatively 
democratised: AI weather prediction models are generally cheap to 
experiment with, compared to numerical methods.62 

62 For example, GenCast training used 32 TPUv5 chips for five days. Generating a single 
forecast took eight minutes on a single chip, and was parallelisable. In comparison, leading 
numerical methods require entire supercomputers to be used for hours (Price et al. 2024).  

61 A weather prediction researcher interviewed as background for this report described how 
more research effort into collecting and using better data could lead to a fundamentally 
“observation-driven approach” to weather forecasting. 

60 There is even early work arguing it may be possible to extend weather prediction horizons, 
where numerical methods were historically believed to be limited to around two weeks for 
point predictions (Shen et al. 2024; Chen et al. 2024). Note that this is quite distinct from the 
much longer term problem of climate prediction. AI for climate prediction is an area of active 
research interest, but remains more of an open question compared to the clear progress in 
weather prediction. 

59 A weather prediction researcher interviewed as background for this report emphasised 
that predicting extreme events is difficult, but a key area of interest and stated, “I’ve learned 
not to bet against ML.” 

58 Numerical weather prediction models are used for reanalysis, converting observations of 
weather conditions back to best estimates of weather across the entire series of the surface 
and atmosphere gridded at regular intervals. 
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Most of the obvious challenges to improving weather prediction are around 
data. Existing data is not always readily available, and collection latency 
may be suitable for R&D but not for real-time deployment.63 Many proposed 
data sources are not collected systematically yet, or not publicly available 
(Bouallègue et al. 2024). Systematic data collection would face predictable 
bottlenecks: funding, institutional coordination, and in some cases even 
permissions to install data recording equipment. 

Assuming these challenges are met, AI has the possibility of achieving 
significant real world impact through weather prediction. Already, research 
is exploring how prediction of extreme weather such as storms, floods and 
droughts may improve societal response (Camps-Valls et al. 2025; Cohen 
2024). Additionally, day-to-day prediction of phenomena such as cloud 
cover, humidity, and rainfall can affect critical decisions in power 
infrastructure, agriculture, transport, and other areas (Talbott 2022; Google 
Research, n.d.-b). These applications have significant economic value: for 
example, improvements in hurricane prediction have been estimated as 
saving 70 billion dollars in the US between 2007 and 2020 (Molina and 
Rudik 2024). Existing weather forecasts for the general public and 
businesses in the UK have each been valued around tens of billions of 
dollars (Herr et al. 2024), suggesting that value globally could reach 
hundreds of billions. 

By 2030, the capability will exist in theory to enrich weather prediction 
systems with more accurate, better calibrated, more frequently updated 
weather predictions. The challenge of figuring out how to make use of such 
predictions is ongoing, but even pessimistically, existing decisionmaking 
processes stand to benefit.  

63 For example, imagine that highly localised atmospheric recordings prove beneficial for 
short-term weather prediction. In some cases, currently such recordings might be recorded 
on field-deployed hardware, with readings uploaded every few weeks as part of a research 
project. 
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Discussion & conclusion 
We have examined the trends that drive AI development, and how these are 
likely to unfold by 2030. We argue that continued scaling of training and 
inference compute makes the path forward somewhat predictable, provided 
it keeps improving downstream capabilities. For the most part, current 
trends are likely to persist until 2030. The largest AI models will cost 
hundreds of billions of dollars, and use about 1,000x more compute than 
today’s leading models. This is worthwhile if they can generate trillions of 
dollars of economic value by increasing productivity – which seems 
plausible, in light of AI capabilities advances. 

We have also examined how AI could accelerate parts of scientific R&D by 
2030. In particular, we have looked at the areas where there is relatively 
compelling evidence: tasks where there are relevant benchmarks, and we 
can show that AI is on track to scale up to a high level of performance. 
These predictions have caveats, but they offer clear evidence about tasks 
that future AI will be able to perform. AI will help scientific R&D in two ways: 
specialised tools for specific high value tasks like biomolecule prediction, 
and general-purpose agents for research tasks like literature review. 
Evidence so far is strongest for the former, where existing AI tools are 
already helpful across several R&D areas. Meanwhile, general-purpose 
agents are seeing active development, and already exist in an early form, 
but with less evidence on how helpful they are so far. 

We have not examined the risks that come with transformative technology. 
In the 2030 predicted in this work, there is obvious potential for misuse: 
many of the capabilities we discussed for scientific R&D have potential for 
dual use such as cyberattacks or creating biological weapons. The prospect 
of relatively autonomous agents, able to pursue goals in the wider world, 
complicates this picture even further. There are also broader societal risks 
in the rush to develop advanced AI, ranging from labour market disruption 
to the environment. The drive to establish sufficient electrical power and 
manufacture specialised AI hardware could lead to heightened political 
tensions and significant environmental impacts. We examined how, 
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depending on energy infrastructure, even a massive AI scale-up could lead 
to relatively small carbon emissions. However, as with the other risks, this 
requires societal choices about how to develop AI, how to control its use, 
and how to mitigate its hazards. 

There are also important choices about how to enable AI development. For 
many of the key trends in development, decisions such as funding or 
regulation are crucial. One important example is power. If future AI training 
runs require gigawatts of power, approaching the demand of entire large 
cities, then regulation and investment for infrastructure will have important 
implications for where (and how easily) large-scale AI training can happen. 
Similarly, regulation could have large effects on where automation can 
happen in the economy, and could potentially lead to large differences in AI 
deployment between different jurisdictions. We take no stance on what 
form such regulation ought to take – but it will clearly be important, and may 
even shift the trajectory of AI development, for better or worse. 

By 2030, AI is likely to be a key technology across the economy, present in 
every facet of people’s interaction with computers and mobile devices. Less 
certain, but plausibly, AI agents might act as virtual coworkers for many, 
transforming their work through automation. If these predictions come to 
pass, then it is vitally important that key decisionmakers prioritise AI issues 
as they navigate the next five years and beyond.  
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Appendix: AI’s potential 
to reduce GHG 
emissions 
We conducted a shallow review of AI applications with the potential to 
reduce GHG emissions. For each of the five most carbon-intensive 
economic sectors (electricity and heat, transport, manufacturing and 
construction, agriculture, industry), we searched for the keywords “AI 
emissions [sector]”. We then reviewed the results for consolidation into the 
below categories. This review is not intended to be exhaustive, but rather to 
provide a broad overview of different possible AI applications being 
discussed for these sectors. 

Applications are divided into less speculative and more speculative 
categories. For the less speculative applications, we attempt to provide a 
back-of-the-envelope calculation for potential GHG reductions, relative to 
current emissions. This is intended to be more illustrative of applications’ 
upper bound potential than a thorough projection. We include AI 
applications even when they can be fulfilled with older or lightweight AI 
models, noting that many of these applications do not rely on frontier AI 
systems, i.e. they might plausibly be achieved without substantial further 
scaling. 
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Less speculative, already being piloted or used 
 

Example of 
downstream 
application 

Potential to avert emissions 

Energy management 
systems (e.g. for 
datacentres) 

Industrial energy consumption is a complex control 
problem, where AI systems may improve on earlier 
efforts. Existing work resulted in 9-13% energy reduction 
in live testing (Luo et al. 2022). It is unclear whether 
further improvements are feasible, but deploying this 
across other datacentres could plausibly avert 10% of 
datacentre cooling emissions, which in turn make up 
10-20% of total datacentre operational emissions, so 
could avert 0.01-0.02% of current global emissions, 
assuming full adoption.64 More ambitiously, assuming 
space cooling makes up 2% of global emissions,65 a 
similar effect would correspond to averting 0.2% of 
global emissions. 

Condensation trail 
reduction 

Condensation trails from aircraft are a significant 
contributor to global warming, estimated at 35% of 
aviation’s total GHG emissions. Improved forecasting can 
allow airlines to adapt their routes to reduce contrails, and 
in a pilot study reduced emissions by half (Elkin and 
Sanekommu 2023). Aviation currently accounts for 2.5% 
of total world emissions (Ritchie 2024), so this could 
avert 0.4% of current global emissions under full 
adoption. 

More efficient traffic 
routing 

Drivers use map services to determine their routes. 
Efficient routing, using AI to process traffic data, can 
reduce emissions. It is uncertain to what extent this 
should be counted as a future development, given that 
this is already live within existing maps products. This 
feature averted 2.9 million tonnes CO2e in deployed 
countries across two years (Google Sustainability 2024), 
so below 0.01% of total emissions. Aggressively, if its 
usage could be increased 10x, this might reach 0.1%. 
 

65 Space cooling was about 2% of global emissions in 2016 (International Energy Agency 
2018). 

64 Globally, datacentres are believed to account for about 1% of GHG emissions (Rozite et al. 
2023). 
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Relatedly, smart traffic control systems have reduced 
emissions while waiting at intersections by 10% in pilots 
(Google Research, n.d.-a). If we assume that anywhere 
between 5% to 50% of total transport emissions came 
from intersection waiting66, and motor transport accounts 
for approximately 30% of total emissions, then this could 
avert 0.15-1.5% of current global emissions, under full 
adoption. 

More efficient 
transport sharing and 
EV adoption 

AI can potentially improve transport sharing and electric 
vehicle adoption by better solving allocation problems. 
Currently, something like 1% of annual car trips use the 
largest ride-sharing platform, Uber. A highly speculative 
estimate, but if motor transport accounts for 30% of total 
emissions, and better transport sharing could lead to 5% 
reduction of emissions, this might avert up to 1.5% of 
global emissions.67 

Optimising the 
electrical grid to 
lower carbon 
intensity 

Better prediction of demand and operation of complex 
control systems can improve coordination between green 
power generation and demand. A pilot study found that 
wind power’s economic value could be boosted 20% 
through such methods (Elkin and Witherspoon 2019). 
Aggressively assuming that this leads to 20% more 
production of wind power than otherwise, and displaces 
an equal amount of non-renewables generation, this 
could avert up to 1.6% of global emissions.68 

Industrial process 
optimisation 

Some industrial processes such as oil and gas processing 
(Degot et al. 2021) (15% of global emissions), steel 
manufacturing (Degot et al. 2021) (7% of emissions), or 
cement-making (Carbon Re, n.d.; Ge et al. 2022) (7% of 
emissions) are particularly carbon-intensive. To the 
extent that AI can optimise these processes, it can have a 
large impact. It is unclear whether to count this as using 
AI, as existing case studies are more focused on analytics 

68 Wind power is projected to become about 14% of total electricity generation by 2030 (IEA 
2024). If it displaced an additional 2.8pp of non-renewable electricity, this would displace 
2.8pp out of the projected 54% of non-renewable generation, which would by then comprise 
about 30% of global emissions, i.e. 1.6% of total emissions or 5.2% of power emissions. This 
is a factor of 3x smaller than an existing analysis of several potential applications of AI to the 
power sector (Stern and Romani 2025). 

67 This lines up well with a preliminary analysis by Stern and Romani (2025). 

66 Broadly consistent with this back-of-the-envelope calculation, Wu et al. (2025) found a 
6.7% reduction in road traffic emissions in simulations of China’s largest 100 cities. 
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platforms that might have been implementable with 
traditional methods. Case studies are claimed to reduce 
emissions by 2-5%, suggesting a global reduction of 
0.6-1.5% under full adoption. 

Optimising domestic 
heating systems 

Similar to energy management systems for datacentres, 
domestic heating can be optimised to reduce emissions, 
and AI can optimise better than traditional approaches. 
Early evidence indicated a learning thermostat could 
reduce a home’s heating demand by 5-8% (Park 2017). 
Current adoption of smart thermostats has been 
estimated at 13-17% (Parks 2024). Assuming that 
adoption increases to 40%, then heating emissions could 
be reduced by 1.2%. If building heating makes up 10% of 
global emissions (IEA 2022), then this could give up to a 
0.15% reduction in total global emissions. 

 

More speculative, currently suggested or early in 
research 
 
Example of 
downstream 
application 

Potential to avert emissions 

AI-enabled 
breakthroughs for 
carbon capture 

AI-assisted design of new materials can lead to 
improved materials for carbon capture and storage (Park 
et al. 2024). AI-assisted capture systems might also 
improve capture process efficiency (Fisher et al. 2024). 
In both cases, these are at an early state of research, 
without proof-of-concept at scale.  

AI helping rollout of 
renewable energy 
through permitting 
and planning 

Initiatives exist for using AI to help with planning 
submissions, and pilot studies suggested they reduce 
timelines, although it is unclear how much of this effect 
is from AI rather than a broader change in processes 
(CivCheck 2025). 

AI helping monitor 
emissions 
(deforestation, 
regulatory 
non-compliance, etc) 

Several initiatives exist to monitor processes such as 
deforestation or factory methane emissions (Food and 
Agriculture Organization of the United Nations 2025; 
Maguire 2024). The end result is highly dependent on 
regulation and enforcement, but AI can support 
monitoring. 
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Improving agriculture 
efficiency 

Improving agricultural yields can correspondingly 
improve their carbon footprint, and tracking emissions 
throughout agriculture processes could prioritise 
workflow changes (Halper 2025). 

Circular economy to 
reduce manufacturing 
emissions 

To the extent that AI makes it easier to coordinate resale 
or donation of unwanted goods, it can reduce emissions 
from manufacture. It is unclear how large to treat this 
effect given the potential for induced demand. 

More efficient 
sourcing of goods 

AI can potentially make it more efficient to ensure that 
goods are sourced from sustainable suppliers. This is 
potentially more relevant for corporations deciding bulk 
purchase orders. 

AI-enabled 
breakthroughs for 
nuclear power 

AI is already used to advance basic scientific research 
for areas such as fusion research. It is highly uncertain 
what the end result would be, but if successful, this 
could lead to a breakthrough in clean energy (Degrave 
et al. 2022). 

AI chemistry and 
biochemistry tools to 
develop new 
materials, fuels, 
feedstocks, 
processes, etc. 

AI tools for discovery of materials and chemicals could 
potentially lead to greener alternatives (Merchant et al. 
2023; Kuzhagaliyeva et al. 2022). 
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Appendix: benchmark 
extrapolation details 
We select benchmarks with compelling relevance to an R&D field, e.g. 
SWE-bench for software engineering, and search for evaluation results 
from leaderboards and notable AI model releases. 

We filter, keeping only scores from models that have plausibly been the 
best-scoring at the time of their publication. Sometimes there are edge 
cases, for example high scores from models that saw a long lag between 
publication and release, or with uncertain details for their elicitation and 
grading. We note these in relevant captions where they affect results. 

We perform simple normalisation to 0-1 between random chance and 
perfect performance. Label noise could mean that a perfect score is 
unachievable in practice for many benchmarks, and for benchmarks such 
as RE-Bench it is unknown what the highest plausible score is. However, 
because most of our datapoints are below such a ceiling, we do not expect 
this to make a large difference in fitting. 

We then fit a sigmoid versus time for the running best models. We do not 
include other details explicitly, for example training compute, data quality, 
etc. Although this approach is simple, it has a history of usage as a baseline 
for benchmark prediction, particularly once mid-range scores are achieved 
(Owen 2024a; Grattafiori et al. 2024). 

We show indicative uncertainty bands via the 90% prediction interval, 
assuming normal residuals and standard errors of fitted parameters. 
All-things-considered uncertainty is higher, but this provides a sense of the 
range suggested by current trends. 
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